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Chapter 1

Getting Started

After more than 20 years, 50 cohorts and 650 students through the program
it is time for some formalized notes. The content and exercises have stabilized
in the last five years. A lecture plan for the first four or five days:

Four Days Five Days

• Overview
• Notation, mathematics
• Stationarity, composites, outliers

• Overview
• Notation, mathematics
• Stationarity, composites, outliers

• Probability
• Statistics
• Declustering

• Probability
• Statistics
• Declustering

• Bayes Law
• Coordinate rotation, anisotropy
• Grids and block size

• Bayes Law
• Review

• Bivariate distributions
• Covariance and correlation
• Principal component analysis

• Coordinate rotation, anisotropy
• Grids and block size
• Bivariate distributions

• Covariance and correlation
• Principal component analysis
• Review

This notes package is not exhaustive - more like a roadmap for the content
being covered. Some references are given and lecture content is summarized.

1



2 CHAPTER 1. GETTING STARTED

Those additional references, relevant Geostatistics Lessons (cited, but see
geostatisticslessons.com), papers and books will be required [35, 13, 28, 37,
9, 38].

The content is delivered in four or five days per week for four weeks. His-
torically, the Edmonton cohort has been four days per week and most others
have been five days of instruction per week. The roadmap presented here
is for four four-day weeks. Some redistribution of content, see Table above,
additional review and demonstrations complete the five day version. Each
Chapter is a week, each section is a day and each subsection is a lecture (8:30
to 9:45, 10-11, 11:05 to noon). There are exercises and self study in the af-
ternoon. Participants are encouraged to work together, but everyone must
submit their work individually. Virtual work is more complicated, but worth
the engagement. Any question or concern that you have is surely shared by
other participants in the course.

The Citation in the first few years were in response to specific demand from
Chile and South Africa. Marcelo Arancibia from Maptek South America
championed the formal Citation as a credential for industry. His finger-
print on the Citation is not to be under estimated. The first formal Cita-
tion through the Faculty of Extension at the University of Alberta was in
Chile in 2002. Figure 1.1 shows the participants to date. There is no way
to acknowledge all of the people that have had a meaningful impact on the
Citation, yet I can mention a few. Graeme Lyall was there at the start. Oy
Leuangthong contributed to the material and teaching in the early days. Jeff
Boisvert contributes to teaching as time went on. Eric Gonzalez was there
from the start and translated and helped more times than can be counted in
Chile. Claudia Monreal is the modern face of the Citation in South America
and has translated and helped countless students. Many teaching assistants
have helped including Chad Neufeld, John Manchuk, Brandon Wilde, Jared
Deutsch, Ryan Barnett, Miguel Cuba, Diogo Silva, Felipe Pinto, Ben Harding
and Oktay Erten.

The project is an important part of the Citation program. This is an un-
scripted application of geostatistical tools with data provided by the partici-
pant (or the instructor). The results are proprietary to the participant, which
facilitates integrating the project into ongoing work. An observation is that
the participant will not be happy with the project at the deadline, but they
should hold their nose and submit anyway. The project is a demonstration of
independent application of geostatistics and consists of, approximately, a 20
page PDF document representing 100+ hours of independent work. Do the
best possible and submit on time.

The project should have some background, but do not copy in large parts
of a geology or previous resource report. Just enough background for the
gestatistics to make sense. There should be a clear problem statement and

geostatisticslessons.com
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Figure 1.1: Participants at the preparation of this edition.



4 CHAPTER 1. GETTING STARTED

workflow. Some ideas for a good project: (1) a good kriged model for one
variable in one rock type with exploratory data analysis (EDA), declustering,
variograms, change of support, validation and model checking - this is good
for beginners. (2) a drill hole spacing study with quantified uncertainty, (3) a
multivariate geostatistical study that includes machine learning and geomet-
allurgy, or (4) a geological domain uncertainty study. Details are provided
during the course.

Software is essential for modern geostatistics and there are many commercial
and other alternatives. The approach advocated in the course is to use pygeo-
stat http://www.ccgalberta.com/pygeostat/welcome.html and GSLIB/CCG
executables. Any software can be used, but participants will likely find that
their commercial software has not implemented everything that is used in
the class. It is recommended to use the provided software. An alternative
that implements everything that I feel needs to be implemented is the RMS
Platform (resourcemodelingsolutions.com/).

1.1 Introduction

1.1.1 Overview of Geostatistics

Geostatistics is a philosophical approach and a toolkit that applies statistical
and numerical analysis principles to rock properties within some spatial do-
main. In most circumstances, less than one trillionth of the rock is sampled
from the domain. Moreover, there is geological variability at all scales. The
inevitable conclusion of sparse sampling and variability at all scales is that
there is uncertainty. Our job is to quantify this uncertainty, communicate it
and make the best decision possible. The focus of this course is the funda-
mental principles of: (1) geological heterogeneity modeling, (2) uncertainty
assessment, and (3) decision-making and resource reporting.

Historically, science involved (1) extensive data collection and physical ex-
perimentation, then (2) deduction of laws consistent with the data. Now,
many aspects of science follow a more inductive approach concerned with
(1) understanding and quantifying physical laws, and (2) numerical model-
ing for inference. We now accept that uncertainty cannot be removed. Rev.
Thomas Bayes (1702-1761) first used probability inductively and established
a mathematical basis for probability inference.

Figure 1.2 sets the stage for a hypothetical question. The kidney shaped area
is a geological domain under consideration. The red dots are drill holes that
intersected ore. The white dots are drill holes that intersect waste. The black
square is an unsampled location. The blue squiggly line represents seismic

http://www.ccgalberta.com/pygeostat/welcome.html
resourcemodelingsolutions.com/
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Figure 1.2: Illustration of the challenge of integrating probabilistic informa-
tion.

data. The overall probability of ore is 0.5. The probability of ore at the
unsampled location conditional to the drill holes is 0.7. The probability of
ore at the unsampled location conditional to the seismic is 0.8. Intuitively
(since assumptions would be required for calculation) what is the probability
of ore at the unsampled location conditional to both the drill holes and the
seismic? This is discussed in the class.

Danie Krige and Herb Sichel studied reserve estimation problems in South
Africa from the 1950’s establishing the problem [41]. Professor Georges Math-
eron (1930-2000) built the major concepts of the theory for estimating re-
sources he named Geostatistics [45]. The Traité de géostatistique appliquée
(Editions Technip, France, 1962-63) defines the fundamental tools of linear
geostatistics: variography, variances of estimation and dispersion, and krig-
ing.

The author considers that there have been four paradigms of geological mod-
eling, see Figure 1.3 for a graphical illustration. First (I), hand drawn maps
and sections - epitomized by an image of the Turin papyrus, which is con-
sidered the oldest geological map. Second (II), computer implementation of
what we do by hand with the machine in a faster and, hopefully, more ob-
jective manner - epitomized by an image of Danie Krige, who (with Georges
Matheron) championed the use of modern technology for resource estima-
tion. Third (III), the quantification of uncertainty that is something we could
never do by conventional hand techniques - epitomized by an image of Andre
Journel’s world-beating enthusiasm, teaching and mentoring. Finally, fourth
(IV), the active management of uncertainty where we can change the uncer-
tainty by our actions and optimize our decisions - epitomized by an image of
Markowitz’s efficient frontier, which is a result of kriging-like equations and
expresses the concept that we can trade value for a reduction in uncertainty.
These four paradigms help put what we do in context and prepare ourselves
for the future that will include intensive automation, machine learning and
artificial intelligence.
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Figure 1.3: Illustration of the four paradigms of geological modeling. The
photos are of Danie Krige (taken by the author), Andre Journel (from Stan-
ford web page), and Harry Markowitz (reference given).
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Figure 1.4: Illustration of a fluvial geological environment (Figure 3.43 from
[51]). The data are related together in complex ways due to the underlying
geological features and not the mechanism of choosing their locations.

Statistics is concerned with scientific methods for collecting, organizing, sum-
marizing, presenting and analyzing data, as well as drawing valid conclusions
and making reasonable decisions on the basis of such analysis, Geostatistics
is a branch of applied statistics that places emphasis on the: (1) geological
context of the data, (2) spatial relationship between the data, and (3) data
of different volumetric support and precision.

There is no way to make geological data independent and identically dis-
tributed; the underlying processes impart spatial structure that is important
for us to quantify and transfer into our final predictions. Figure 1.4 provides
a sketch of this concept. Data that are collected a large distance apart in
the basinward direction are related through the geological processes. The
mechanism of choosing the data locations is less relevant than the underlying
geological processes.

There is a single true distribution of properties in each deposit at any instance
in geological time. The true distribution is the result of a complex succession
of physical, chemical, and biological processes. Although some of these depo-
sitional and diagenetic processes may be understood, we do not completely
understand all of the processes and have no access to the initial and bound-
ary conditions in sufficient detail to predict the unique true distribution. We
adopt a numerical geostatistical model because we have no alternative.

Geostatistics is useful for: (1) putting geology into numbers, (2) estimation,
(3) quantifying uncertainty, (4) sample design, and (5) simulation / risk anal-
ysis. Geostatistics does not work well as a black box, replace the need for
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common sense and good judgment, save time or make modeling any easier.
Nevertheless, geostatistics is the best approach at present for resource mod-
eling. Enough validation tests with k-fold validation and reconciliation to
production data have been performed.

1.1.2 Notation and Some Mathematics

Upper case letters (X, Z, . . .) are often reserved for random variables (RVs).
These variables are not entirely random, but they are not certain; a proba-
bility distribution is used to quantify what we know and do not know about
them. Lower case letters (x, z, . . .) often represent outcomes of random vari-
ables - perhaps measured data or perhaps simulated outcomes. Bold font (u,
h,) is often reserved for vectors with some component in coordinate direc-
tions. The symbol ∈ means that something belongs to. The symbol ∀ means
that something is true for all possibilities. The summation

∑
and product∏

symbols are commonly used for adding or multiplying a list of numbers.

The values of a regionalized variable over a domain A could be considered a
random function and denoted as follows:

{Z(u),u ∈ A}

We subscript a list of numbers with characters i, j, . . . or α, β, . . .. The letter
n or N is often used to denote the number of data. The letter L is often used
to denote the number of realizations. The letter K is often used to denote
the number of rock types or the number of variables. Multiple realizations of
a multivariate block model could be denoted:

{zk,l(ui); i = 1, . . . , N ; k = 1, . . . ,K; l = 1, . . . , L}

My intention is to define additional notation on first usage.

Derivatives are essential for optimization. They are the slope of a function
with respect to a variable. When the derivative is zero, the function is a
minimum or maximum. They are rarely derived from first principals. They
can be looked up in mathematical handbooks. The derivation of f(x) = x2

will be given in class and the generalization will be explained. The derivatiave
of f(x) = xn with respect to x is nxn−1 and we use this in geostatistics to
minimize error variance. It is interesting to reflect on how efficient derivatives
are for optimization considering the brute force alternative of exploring the
entire space. In presence of 30 variables, conventional optimization would
require computing the variable values that minimize 30 derivatives. If we
were to try that in a brute force manner by discretizing each variable by
10 values, then we would have to evaluate the function1030 times, which is
inconceivable.
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Integration is used to solve the area or the average problem. The integration
of f(x) = x will be given in class and the generalization will be explained.
The integration of f(x) = xn between the bounds of a and b by infinitesmal
intervals dx is given by:∫ b

a

xndx =
1

n+ 1
xn+1

∣∣∣b
a

=
1

n+ 1

(
bn+1 − an+1

)
In general, the solution to the integration of different functions is found in
the literature. It is good if the geostatistician understands integration as it
relates to expected values. The fundamental theorem of calculus lays out the
link between derivatives and integration.

In geostatistics, we often deal with linear sums such as Y = a1z1 + a2z2 +
. . . + anzn =

∑n
i=1 aizi. The quadratic form of a sum is a double sum:∑n

i=1

∑n
j=1 aizi ajzj . The differentiation of a sum by a particular coefficient

is important in our build up to kriging.

∂
(∑n

i=1

∑n
j=1 aizi ajzj

)
∂ai

= 2zi

n∑
j=1

ajzj

This is part of the first exercise. These basic mathematical concepts are
not used on a day-to-day basis by a geostatistician or resource estimator;
however, they form the basis of the algorithms we use and will help the rest
of the course make sense.

Matrix notation conveniently organizes numbers into rows and columns. Ma-
trices of the same size could be added or subtracted. Matrix multiplication
is based on rows multiplied by columns: (mxn)(nxr) = mxr matrix. The
order matters in matrix multiplication. The transpose of a matrix switches
the rows and columns. Aside from simplicity of notation, we will only use
matrices in the Citation to summarize dual kriging. Some additional linear
algebra will be required for that, but the essence of the idea should be clear
without extensive background.

1.1.3 Stationarity

All statistical analysis requires a decision of how to pool the data for statistical
analysis. The data and the study area are divided into reasonable subsets.
It is unlikely that we would consider all of the data and the entire study
area as one domain. The basis to subset the study area / data is necessarily
subjective and not a hypothesis because there is no reference to test against.
We must:

1. Divide the volume of interest into reasonable domains
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Figure 1.5: Illustration of a soft and hard boundary between two rock types.
The distance axes is the distance into 2 from 1 (to the right) and into 1 from
2 (to the left). The variable is on the ordinate axis.

2. Choose whether or not to model a gradational trend in each domain
3. Establish the nature of contacts between domains - See Figure 1.5 for

two schematic contact plots.
4. Determine representative statistics (perhaps with a trend)
5. Assess the uncertainty in critical statistics (usually the mean)

Each of these steps will be discussed to some extent in the course (this book).
Not all of these will be covered in detail in this section.

The first aspect of stationarity is our decision of how to group the data
for (geo)statistical analysis considering: (1) depositional or alteration zones
of different quality/spatial behaviour, (2) rock types within the zones, (3)
spatially coherent. There is often a compromise geological precision and stable
statistics. The geological meaning of the subsets is important. These subsets
are sometimes called geological units, rock types or domains. The precise
terminology is context dependent.

The second aspect of stationarity is our decision of how the statistical param-
eters vary in space. When a parameter can be assumed reasonably constant
over the domain, then we refer to it as stationary. When we consider the
parameter to be locally varying, then we refer to it as non-stationary. Some
sketches could be drawn for the mean and variance in a 1-D setting.

A more formal definition of stationarity is sometimes preferred. A formal
definition comes from time series and is paraphrased as a Stationary process
is one where the unconditional joint probability distribution does not change
when shifted in time. This connotes a location independence of statistical
parameters and not the initial part of stationarity, that is, the choice of a
volume and the data within the volume to work with. Some specific forms of
stationarity that are encountered include:

• Strict/strong stationarity - the entire probability distribution or spatial
law of the variable is invariant under translation.
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• Weak stationarity - 1st and 2nd moments (mean, variance, covariance,
. . .) are invariant under translation. First and second order stationarity
are commonly assumed.

• Intrinsic stationarity - increments of the regionalized variable separated
by specific lag (h) vectors are stationary. The variable could have a first
order trend, but the increments are stationary. Higher order increments
could be considered for more complex trends.

• Quasi stationarity - the regionalized variable is assumed to follow con-
stant statistical parameters within spatial windows or, commonly, search
neighbourhoods.

• Trend stationarity - the regionalized variable is stationary (strong or
weak) after removal of a trend. This is commonly assumed.

Increasingly in modern geostatistics we are explicitly defining or describing
stationarity with auxilliary variable(s) like trend models and locally varying
anisotropy direction/magnitude models.

This course is not principally concerned with data collection, sampling the-
ory, database integrity, but these issues must be mentioned. Standard best
practices should be followed in all aspects of data collection, preparation and
assaying. In general, geostatistical tools have no ability to detect problem
data: (1) errors appear like short scale geological microstructure, (2) biases
can be detected between data sources, but the truth cannot be discerned from
geostatistical analysis. Special geostatistical analysis is required for noniso-
topic data or data that is not sampled at the same locations.

The term compositing refers to the procedure of combining adjacent values
into longer down-hole intervals. The grade of each new interval is calculated
on the basis of the weighted average of the original sample grades. These
are weighted by length and possibly by specific gravity and core recovery.
Compositing typically leads to an average representing the entire thickness
of the zone or some regular length interval. There are special considerations
for partial lengths at the end of drill holes and for partial lengths at the
boundaries between domains.

The main reasons to composite are to (1) focus on a the scale of relevance
for mining resource estimation, (2) filter high frequency variations to show a
much better variogram, (3) mitigate the string effect in kriging to improve
estimation [14], and (4) to be compliant with virtually all software that as-
sumes the data represent the same volume. Length weighting is not a good
idea in estimation - it would only be correct if the variogram is a pure nugget
effect. Regular length or bench composites are common. The length should
be small enough to permit resolution of the final simulated grid spacing.

Outliers and extreme values are a concern in deposits with highly skewed
distributions [47]. Clearly, errors in the data should be corrected and samples
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that are clearly erroneous should be rejected. We cannot blindly follow the
advice in statistics books since extreme values are justifiably removed in many
cases for robust statistics, but these extreme values represent a significant
fraction of the metal in many deposits. We cannot blindly use all data. The
goal is to ensure: (1) no conditional (local) bias in the volumes around the
outliers, and (2) no unwarranted dependence on few samples. An outlier
should be considered in a spatial context - a high value among other high
values is of lesser concern. Cross validation could help with this. Trying
to isolate the high values into their own stationary domain mitigates the
problem.

An advice is to follow local customs. This is not an excuse to be lazy, but a
practical recommendation to make the resource estimate consistent with past
and similar resource estimates. We also consider probability plots; looking
for inflection points. Another helpful measure is the Tukey fence [59] where
the upper threshold is considered:

zlimit = z0.75 + k (z0.75 − z0.25)

where k is 1.5 or 3.0 depending on the degree of outlier being considered and
z0.75/z0.25 are quarties of the distribution (discussed below). Metal at risk,
that is, the fraction of the metal based on a small number of extreme values
could be considered.

The simulation approach in the Lesson [10] is neat, but a significant amount
of professional work. This would be considered in advanced projects or when
significant geostatistical expertise is available.

1.1.4 Exercise W1-1

The objective of this exercise is to review some mathematical principles and
to become familiar with some notation. Please write out by hand and show all
important steps. Photograph/scan the pages and submit a PDF for marking.

1. Consider the following function f(x, y) = (ax + by)(x + y). Calcu-
late the derivative of this function with respect to x, that is, calculate
∂f(x, y)/∂x. Also calculate the derivative of the function with respect
to y, that is: ∂f(x, y)/∂y.

2. Calculate the following integral:∫ 5

0

(
1

2
x2 + x3 − 1

4
x5
)
dx

3. Consider the three matrices below:

A =

[
5 2
2 3

]
B =

[
1
4

]
C =

[
2 3

]
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what is the result of AB and CB?
4. For the summation below, calculate the derivative ∂f(λi, i = 1, . . . , 4)/∂λk

with respect to λk where k is an index between 1 and 4. You may want
to compute all four and see if they are any different.

f(λi, i = 1, . . . , 4) =

n∑
i=1

n∑
j=1

λiλj

5. (optional) Expand the following system of equations from matrix form
to summation form. In addition, solve this linear system of equations
for λ1 and λ2 symbolically where n = 2.C(u1 − u1) · · · C(u1 − un)

...
...

C(un − u1) · · · C(un − un)


 λ1...
λn)

 =

C(u1 − u0)
...

C(u1 − un)

 =

1.2 Statistics

1.2.1 Probability

There are many variable types encountered in geostatistics. The main dis-
tinction is continuous and categorical variables. Categorical variables could
be nominal, ordinal, binary or a count. In most cases we consider them to
be a nominal description or an indicator of a stationary domain. Continuous
variables are mostly grades, thicknesses and variables that average linearly,
but variables that average non-linearly are being encountered increasingly
in geometallurgy and more complete rock characterization, see Figure 1.6.
A power law transform is sometimes condidered to linearize variables [12].
Compositional data will be addressed with multivariate.

For practical purposes, the meaning of probability is clear. It is the proportion
of times something would occur under similar circumstances. Categorical or
discrete variables can take one of K states. Uncertainty is represented as
the probability of each state: pk, k = 1, . . . ,K. Probability is proportion of
times each state will occur under similar circumstances. Must be nonnegative
and sum to one. Perfect knowledge would be one p value equal to 1 and all
others zero. Complete uncertainty would be pk = 1/K for all categories.
Prior proportions often tell us that some states are more likely. Virtually
all categorical variable distributions are non-parametric, that is, specified by
proportions derived from data. Benford’s Law and the Binomial distribution
are two parametric categorical variable distributions that are sometimes used.

Benford’s Law is an interesting categorical variable parametric distribution
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Figure 1.6: Illustration of the nature of averaging of different continuous
variables.

for the probability of non-zero leading digit in natural numbers spanning
several orders of magnitude:

p(d) = Log10(1 + 1/d) d = 1, . . . , 9

This could be used to detect fraudulent data. The other categorical variable
distribution used in Mining and Petroleum is the Binomial distribution for
probability of k successes in n independent trials where p is the probability
of one trial:

f(k, n, p) =
n!

k!(n− k)!
pk(1− p)n−k

As mentioned, these are uncommon. Non-parametric and, often, non-stationary
distributions are used for categorical variable distributions.

The universal approach to represent uncertainty in a continuous variable is
the cumulative distribution function (CDF). Replace the unknown truth ztrue
by a random variable Z. The cumulative distribution function (CDF) of an
RV is defined as:

F (z) = Prob {Z ≤ z}
The CDF F (z) is non decreasing within [0, 1]. F (zmin) = 0 and F (zmax) = 1.
The CDF is flexible in representing great uncertainty (F (z) spread over a large
range of z) and certainty (F (z) a step function at the certain z value).
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There are three ways to infer a CDF:

1. Degree of belief - for global parameters that are inaccessible
2. Proportions from data - global probabilities and distributions
3. Mathematical model - local conditional parameters

The probability of Z occurring in an interval from a to b (where b > a) is
the difference in the cdf values evaluated at points b and a. The probability
density function (pdf) is the derivative of the cdf, if it exists:

f(z) = F ′(z) = lim
dz→0

F (z + dz)− F (z)

dz
≥ 0

The CDF and PDF contain equivalent information. It may be convenient to
consider one in mathematical calculations / computer implementations and
another in visualization or for other calculations.

A parametric distribution is one where F (z) or f(z) is given by an equation
with some parameters. There may or may not be a generating mechanism for
the probabilities. Most earth science distributions are non-parametric and
inferred by proportions from data.

The generating mechanism for the Gaussian distribution is summarized in
central limit theorem (sum of many iid→ Gaussian), as shown on Figure 1.7.

y = G−1(F (z)) or Y =
Z −m
σ

; g(y) =
1√
2π
e
−y2

2

The multivariate Gaussian distribution is used extensively in geostatistics
because it is simply parameterized and tractible.

The lognormal distribution is closely related to the Gaussian or normal distri-
bution and is also common in geostatistics. Z  logN(m,σ) when Y = ln(z)
is N(α, β2). The parameters are related by:

α = ln(m)− β2/2 β2 = ln

(
1 +

σ2

m2

)
m = eα+β

2/2 σ2 = m2
(
eβ

2

− 1
)

Considering a bivariate distribution that we have not yet talked about, the
correlation in Gaussian and lognormal units is also related:

ρZ =
m2

σ2

(
eβ

2ρY − 1
)

This relationship is used in back transforming the variogram of log-grades,
which could be much more stable than the variogram of the original units.
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Figure 1.7: Illustration of the generating mechanism underlying the Gaussian
distribution - the sum of independent and identically distributed random
variables.

Figure 1.8: Illustration of a non parametric distribution.

The uniform distribution will be considered in the exercise. It is simple and
amenable to an exercise to make participants more familiar with the math-
ematics, notation and probabilistic concepts. It is also important since all
probabilties for a given CDF are uniformly distributed. This is true regard-
less of the variable or the distribution. Fixing the distribution as a marginal
distribution, then conditioning leads to the beta distribution.

A Nonparametric distribution comes from the data themselves. There are
often enough data. Geological data do not follow a convenient parametric
model. It is possible to transform any univariate distribution to any other
distribution if required for mathematical calculations.

The procedure to build a non-parametric distribution: (1) sort the data in
ascending order, (2) compute cumulative weights to be less than or equal
to, (3) average with the value from the preceeding data, and (4) interpolate
between the points to fill in F (z)∀z. See Figure 1.8 for an illustration.
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1.2.2 Statistics

Statistics could refer to a large field of study or to summary measures that
characterize probability distributions. This section focuses on the latter.

The p-quantile of the distribution F (zp) is the value zp for which F (zp) = p.
Thus, the quantile can be expressed in an inverse form of the CDF q(p) = F−
1(p). The probability value lends meaning to a particular number. The P10,
P50 and P90 are important quantiles used to summarize a distribution. The
three quartiles, that is, z0.25, z0.5 and z0.75 divide the distribution into four
equal parts. The interquartile range (IQR) is another measure of dispersion of
variation of a distribution. The difference between the mean and the Median,
m-z0.5, is a measure of skewness.

A Q-Q plot compares multiple univariate distributions to a reference distri-
bution. Q-Q plot is a plot of matching quantiles a straight line implies that
the two distributions have the same shape. A shift up or down indicates a
difference in the center of the distribution. A slope different from 1 indicates
a difference in the variance. A non-linear shape indicates a difference in the
shape of the distribution.

A Q-Q plot is not for paired values. A scatterplot is used for that. Some
valid applications of a Q-Q plot include (1) different measurements (DDH
versus BH, log versus core, . . .), (2) checking the histogram of a 3-D model
(representative data distribution versus the 3-D model), (3) comparing distri-
butions of a variable within different rock types, (4) comparing distributions
within different drillholes, and (5) comparing different models. An example
Q-Q plot is shown on Figure ??.

The expected value is a statistical operator that is the probability weighted
average of the random variable: Expected value of a constant is the constant.
The expected value is a probability weighted average:

E{·} =

∫ zmax

zmin

·f(z)dz

The most important expected value is the mean:

m = E{Z} =

∫ zmax

zmin

zf(z)dz

In theory, the expected value is an integral (probability weighted average); in
practice, the expected value is estimated by a weighted average:

m̂ =

n∑
i=1

wizi
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Figure 1.9: An example Q-Q plot comparing the distributions from 100 re-
alizations against the reference distribution for the stationary domain. Note
that the result do not look particularly good - the distributions appear sys-
tematically biased on average.

The mean is also known as the first moment, that is, the center of mass of the
probability density function. The variance is a second order moment defined
as:

σ2 = E{[Z −m]2} = E{Z2} −m2

The variance is a measure of the spread of the data from the mean. The
standard deviation is the square root of the variance. It also measures data
variability from the mean. The dimensionless coefficient of variance (CV)
is the ratio of the standard deviation over the mean (σ/m). This works
for positive variables. Conventional wisdom indicates that a variable with a
CV < 0.4 is not that variable and potentially straightforward to model. A
variable with CV > 2.0 is quite variable and the domain should be considered
for subdivision. These are not fixed values, but general guidelines.

The mean is the correct number to replace a probability distribution when
the variable under consideration averages linearly. Consider mass percentage
measurements of 9, 1, 1 and 1 for four units of rock of equal mass. If the piles
were combined, the mass percentage would be 3 and not a quantile or a more
robust estimator. This is true for mass fractions, volume fractions, rock type
proportions and other variables that average linearly. The correct effective
value is not the median, mode, Exceptions are when the variable does not
average linearly such as color, rate constants (permeability, work index, etc.).

Many geostatistical calculations require continuous variables to exactly follow
the standard normal distribution, that is, N(0, 1) normal with a mean of zero
and a variance of one. The normal score transform is used to transform non-



1.2. STATISTICS 19

Figure 1.10: Illustration of the normal score transform (see Lesson). A value
of 10 is transformed.

normal data following any distribution to a Gaussian or normal distribution.
The steps: (1) determine the representative Z-variable distribution FZ(z), (2)
transform each z data by matching quantiles, y = G−1(FZ(z)) where G(y) is
the CDF of the N(0, 1) distribution. Figure 1.10 shows this for one z value
of 10.0. This is taken from the Lesson [52] on the normal score transform.

Regarding the normal score transform, a representative distribution FZ(z) is
the most important consideration. Spikes of constant values coming from de-
tection limit or round off are also a concern. The ties must be broken to avoid
a spike in Gaussian units that is not allowed. Entirely random despiking leads
to a too-high nugget effect in the final variogram. A combination of a local
average and random despiking has been shown to work well. Another op-
tion is to isolate the barren/unmineralized material into its own domain/rock
type.

1.2.3 Declustering

The data are considered trustworthy (although every measurement is associ-
ated with some error), but they are almost certainly collected in a preferential
manner. Correcting the statistics for this will be done with declustering and
debiasing. Although clear when the mathematics are reviewed, it is impor-
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tant to note that declustering does not change the data values. The data
remain unchanged. The weight applied to the data may vary. The represen-
tative distribution for transformation and other calculations may come from
another source, but the data do not change.

Data are rarely collected to be statistically representative: Interesting (best)
areas are delineated more completely, Samples taken preferentially from good
quality rock. These data collection practices should not be changed; they lead
to the best economics and the greatest number of data in portions of the study
area that are the most important. There is a need, however, to adjust the
histograms and summary statistics to be representative of the entire volume
of interest

Declustering techniques assign each datum a weight based on closeness to
surrounding data: wi, i = 1, . . . , n histogram and cumulative histogram use
wi, i = 1, . . . , n instead of 1/n. Debiasing uses a secondary variable or trend
to establish representative histogram or proportions

Historical mapping algorithms correct for preferential sampling: no need for
declustering in inverse distance or OK. There is a need for representative
proportions and histograms in modern geostatistics: Checking models, Global
resource assessment, and as an input to simulation. Simulation does not
correct for preferential sampling even though kriging is used inside simulation.
Cokriging with a secondary data does not correct the distribution: correlation
with the rank order of the data is used the conditional distributions are not
used directly

Declustering weights are taken proportional to the areas or volumes of inter-
est. Weights are very sensitive to the border. Despite the apparent criticism
of nearest neighbor declustering, the technique is being used increasingly and
perhaps even more than the competing techniques discussed below.

Cell Declustering is considered to be more robust in 3-D and when the limits
are poorly defined, see Lesson [18] and Figure 1.11:

1. divide the volume of interest into a grid of cells l = 1, . . . , L
2. count the occupied cells Lo and the number in each cell nl, l = 1, . . . , Lo
3. weight inversely by number in cell (standardize by Lo)

Fixing the cell size and changing the origin often leads to different declustering
weights. To avoid this artifact a number of different origin locations are
considered for the same cell size and the weights are averaged for each origin
offset, see Figure 1.12. It is highly unlikely, but if a data falls on a cell
boundary it is randomly moved to an adjacent possible cell.

The cell size should be the spacing of the data in the sparsely sampled areas.
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Figure 1.11: Illustration of the concept of cell declustering. A grid of cells is
placed over the data, the number of data within each cell counted and the
weight is inversely proportional to the number of data in the cell.

Figure 1.12: Illustration of how the origin of the cell declustering grid network
is moved to stabilize the results.
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The declustered mean is often plotted versus the cell size for a range of cell
sizes a diagnostic plot that may help get the cell size. The long range fea-
tures of the diagnostic plot are often influenced by trends and non-stationary
features.

Declustering by Conventional Estimation amounts to perform an estimation
of grid block values within the applicable RT limits and within reasonable
distance to the data. Consider inverse distance or kriging. Accumulate the
weight given to each data in the estimation procedure. Clustered data will
receive less weight overall. Sensitive to the search, variogram, May not work
well if the string effect of kriging is a problem. Results of simulation are
perfectly consistent with kriging a nice property.

A rhetorical question: what do we do when there are too few data or the data
are not representative? Nothing, unless there is some secondary information.
An empirical calibration approach is sometimes referred to as debiasing or
soft data declustering: (1) map a secondary variable X at all locations that
could be geophysical, structural or some kind of trend model, (2) develop
a bivariate relationship between X and the Y variables, and (3) generate
a distribution of Y by combining conditional distributions. The secondary
variable is something geometric, geophysical or geological.

There is no recipe for correct application. Our goal is to go beyond a limited
sample to the underlying true population. It is essential to decluster facies
proportions as well as the distributions of continuous variables. Future geo-
statistical analysis will depend heavily on simple statistics inferred early in
the modeling efforts.

The volume of influence method is gaining ascendancy - fewer artifacts than
thought. The sensitivity to the border actually helps infer a representative
distribution. Trend models somewhat alleviate the need for declustering, but
a good trend model will be built considering declustering weights.

1.2.4 Exercise W1-2

The objective of this exercise is to review some probabilistic concepts and
to continue becoming familiar with notation. Please write out by hand and
show all important steps. Photograph/scan the pages and submit a PDF for
marking.

Consider the uniform distribution specified below:

1. Write the definition and equation for the cumulative distribution func-
tion (cdf) of the uniform distribution.
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2. What is the value of c that makes f(z) a licit probability distribution?
Write your answer in terms of a and b.

3. What is the expected value (or mean) of the variable Z in terms of a,
b, and c? Work out the integral.

4. What is the variance of the variable Z in terms a, b, and c? Work out the
expected value of Z2 and solve for the variance using σ2 = EZ2−[EZ]2.

5. What is the width of the 90% probability interval expressed in terms of
a and b? Use the results of Question 1 and solve for the 5th and 95th
percentiles.

1.3 More Prerequisites

1.3.1 Bayes’ Law

The arithmetic of probability intrigued Thomas Bayes. He thought deeply on
the subject and formulated the fundamental principles that are still used to-
day. It was clear to Bayes that probability is the proportion of times something
would happen in similar circumstances, probability could not be negative and
the sum of probabilities would be one in a closed set. The definition of a
conditional probability and Bayes Law are fundamental to probability and
statistics:

P (A|B) =
P (A and B)

P (B)
and P (B|A) =

P (A and B)

P (A)

P (A|B) = P (A) · 1

P (B)
· P (B|A)

Conditional probability is the prior probability modified by the evidence. The
rarity of the evidence and the relevance of the evidence (likelihood) enter the
equation. Additional details and an example to geostatistical mapping are
contained in a Lesson [21].

The example on Figure 1.13 is developed in the class. The definition of
conditional probability is used extensively in geostatistics. The meaning of
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Figure 1.13: Illustration of the definition of conditional probability.

this is revealed in the requirement to standardize probabilities once evidence
is available.

1.3.2 Coordinate Rotation and Anisotropy

Coordinates and anisotropy are important topics in geostatistics. The funda-
mentals of this will also set the stage for principal component analysis (PCA)
coming later in the week.

The spatial coordinates of a deposit form a metric space with a measure of
distance d where: d(x, y) ≥ 0, d(x, y) = 0 ⇐⇒ x = y, and d(x, y)+d(y, z) ≥
d(x, z). Measures of distance include:

• Chebyshev distance - maximum along any coordinate
• Manhattan distance - measured along axes at right angles
• Euclidean distance - ordinary straight line

h =

√(
hmaj
amaj

)2

+

(
hmin
amin

)2

+

(
hter
ater

)2

• Minkowski Distance - p exponent (pM = 1, pE = 2)

Shortest path distances, LVA, Dijkstra algorithm . . . and fast marching meth-
ods provide an avenue for improved geological modeling.

Real world coordinates are often UTM Easting (X), UTM Northing (Y) and
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Figure 1.14: Illustration for the rotation around one axis

meters above sea level (Z). These coordinates lead to a natural left hand rule.
Imagine your left hand with the thumb sticking upward (Z), the middle finger
pointing to your right (X) and your pointing figure pointing away from you
(Y). This is the starting point for coordinate rotation.

New coordinate systems should never be invented on the fly. Modern software
allows for rotated grid models without changing the actual coordinates.

Aeronautics definition of anisotropy with roll, pitch and yaw is very intuitive,
but not used in geology.

Coordinate rotation: left hand rule. The Lesson [26] is helpful. Consider a
succession of three 2-D rotations (see Figure 1.14 for elementary rotation:

1. Clockwise positive around vertical (angle one)
2. Down negative around what was X (angle two)
3. Polite positive around what was Y (angle three)

Every software is different. Three angles of rotation specify the major, minor
and tertiary directions. The standardized Euclidean distance enters virtually
all calculations.
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Figure 1.15: Two illustrations of typical tabular deposits that would be con-
sidered within the framework of simple tabuluar deposits.

1.3.3 Grids for Geologicical Modeling

Cartesian coordinates and regular 3-D grids are fairly straightforward to un-
derstand. Stratigraphic-like grids for tabular deposits are important to cap-
ture undulations and thickness variations. Generalized tetrahydra grids will
become more popular as software libraries are established.

Considering a regular Cartesian grid, an important consideration is the grid
size. There are many considerations for this including (1) the supporting data
for predictions - one quarter the data spacing is a reasonable natural grid size
recommendation (smaller grid sizes will not be estimated more reliably and
larger grid sizes would lose information), (2) the desire to respect geological
boundaries - smaller blocks or subblocks are desired to capture surfaces that
would not be represented by coarse blocks, and (3) engineering considerations
where the block size is influenced by pit or stope design considerations. A high
resolution grid is recommended even if the block estimates are no better than
a lower resolution grid - at least the result will respect geological boundaries
and support engineering calculations.

Tabular Deposits

Simple tabular deposits are commonly encountered. There are stratigraphic
deposits, lateritic weathered deposits, simple veins, shear zones and many
other situations where a tabular geometry is encountered. A first considera-
tion in the case of tabular deposits is to establish a reference plane. The top
or hangingwall and bottom or footwall are established relative to the refer-
ence plane. Figure 1.15 shows two example reference surfaces; one flat and
one steeply dipping.
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Given arbitrarily oriented data that intersect a tabular structure, we could
consider total least squares plane fitting π : ax+ by+ cz = d to determine the
reference plane. The Eigenvector corresponding to the minimum Eigenvalue
of ATA defined the normal vector:

A =


x1 − x y1 − y z1 − z
x2 − x y2 − y z2 − z

...
...

...
xn − x yn − y zn − z


This is like PCA (defined below) where the major axes of continuity are
calculated through a cloud of points. The ATA matrix could be considered
a covariance matrix (defined below). In any case, by default (horizontal or
vertical), manual specification or automatic calculation a reference plane must
be defined to model tabular deposits.

The commonly accepted approach is to model one position and multiple thick-
ness values relative to the reference plane. Modelling multiple positions would
often lead to crossing surfaces or unreasonably large thicknesses. The most
continuous surface would be chosen for the position variable, then thicknesses
relative to that would be modeled.

Figure 1.16 illustrates the overall approach. Eight drill holes are shown at
the top where three do not intersect the structure - the drillholes with dashed
lines are the ones that do not intersect the structure (Figure 1.16.a). The
red line is the reference plane and the black dots represent the top and base
of the structure of interest. Figure 1.16.b illustrates the modeling of the top
structure (chosen as the position variable) by the blue line. There may be
multiple realizations for the top structure. The drill holes that do not intersect
the structure are not considered in modeling of the top position. Figure 1.16.c
shows the thickness modeled as the green surface below the blue datum of
the reference position. Once again, the drill holes that do not intersect the
structure are ignored. Figure 1.16.d shows the modeled position and thickness
put back together relative to the reference plane. Finally, Figure 1.16.e shows
that the extent of the position and thickness are clipped to account for holes
and for limits within the plane of continuity.

Missing values should be ignored, then clipped by boundary modeling. The
exact nature of the pinch out or termination may not be exactly reproduced,
but this is of little consequence in general given the thin and laterally extensive
nature of these deposits.

Modeling continuous properties within tabular deposits defined by a top and
bottom (perhaps multiple realizations of the top and bottom are available)
required the use of stratigraphic coordinates. Figure 1.17 shows four common
cases for stratigraphic coordinates: proportional, erosion - base conforming,
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Figure 1.16: Illustration of how we model the position, then thickness, then
assemble everything in original units.
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Figure 1.17: Four common cases for stratigraphic coordinates.

onlap - top conforming, and offlap - arbitrary surface conforming.

The coordinate perpendicular to the reference plane (Z in the equation below)
is modified so that a flattened or relative coordinate is considered.

zrel(x, y) =
z(x, y)− zbase(x, y)

ztop(x, y)− zbase(x, y)
· T

Where x and y represent coordinates define the reference plane of continuity.
If the transform is proportional, then the top and bottom are taken locally.
If the transform is erosion, then the top is replaced by the bottom translated
upward by a constant. If the transform is onlap, then the bottom is replaced
by the top translated downward by a constant. The top and base are defined
arbitrarily in the case of offlap. This transformation can be reversed at any
time.

The 3-D models of tabular deposits should not be shown in flattned space.
Highly deviated drill holes relative to the plane of continuity are particularly
problematic; some form of geometric data imputation must be considered.

1.3.4 Exercise W1-3

The objective of this exercise is to become familiar with the use of declustering
to infer a representative probability distribution. The declustering software
in GSLIB or any other software could be used.

1. Consider the Au variable in the skarn2d.dat data file. Decluster the data
set using cell declustering. Cell declustering is widely used because it
is robust and not very sensitive to edge effects.
Plot a location map of the sampling locations and propose a reasonable
cell declustering cell size based on the data spacing in sparsely sampled
areas. Also plot a naive (no declustering) histogram of the variable of
interest.
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Run cell declustering for a range of cell sizes: explain your choice of
parameters in your assignment. Plot the declustered mean versus cell
size, then on the basis of this plot and data spacing, choose a cell size,
and justify your choice.
Plot a histogram of the variable using the declustering weights and
comment on differences with the unweighted histogram.

2. One method to construct a trend model for potential soft data decluster-
ing (debiasing) and global mean inference is global kriging. Use global
kriging with a long range and large nugget effect for creating a trend
model. Visualize the trend model and calculate a histogram of the trend
model for the global mean. Compare with the previous question.

3. Consider the Au variable in the Misima.dat data file. Have a quick look
at the data and run declustering following the principles of Question 1.

1.4 Bivariate Statistics

1.4.1 Bivariate Distributions

Geostatistical modeling considered a very high dimensional distribution of
variables and locations. This high dimensional distribution is almost always
understood through models of the bivariate distributions. Figure 1.18 illus-
trates the magnitude of the distributions we are dealing with.

The bivariate CDF tells us everything about how two variables are related:

FX,Y (x, y) = Prob{X ≤ x;Y ≤ y}

This is a contour map in the space of the two variables X and Y . The
bivariate PDF contains equivalent information:

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y

Like the univariate case, the PDF integrates to the CDF. It may be conve-
nient to consider one or the other for visualization or mathematical purposes.
Figure 1.19 shows a bivariate with marginal, joint and conditional distribu-
tions.

In many cases of presenting bivariate distributions it matter which variable
is shown on the X abscissa axis and which is shown on the Y ordinate axis.
If one of the variables could be considered an independent or data variable,
then it is shown on the X. By convention, the dependent variable is shown
on the Y axis. The only conditional distribution that matters is the one of
Y |X = x. Connecting the expected values of the conditional distributions of
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Figure 1.18: Schematic illustration of the high dimension of geostatistical
problems: K variables at N locations.

Figure 1.19: Bivariate distribution with marginal and conditional.
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Y |X = x would generate a conditional expectation or regression curve. Given
knowledge of X = x, then this curve would give the best estimate of Y .

The bivariate Gaussian probability distribution is sometimes used. There are
few parametric distributions. The Gaussian PDf is given by:

gXY (x, y) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)
[x2 − 2ρxy + y2]

}
E{Y |X = x} = µY + ρ

σY
σX

(x− µX)

V ar{Y |X = x} = σ2
Y (1− ρ2)

Some properties of this distribution are seen again in the multivariate distri-
bution: (1) conditional expectations are linar functions of conditioning data,
and (2) conditional variances are data-value independent.

1.4.2 Covariance and Correlation

Univariate distributions are often summarized by their first two moments:
the mean and variance. A bivariate distribution is summarized by the covari-
ance or the standarided correlation coefficient. The covariance is a two-point
measure used throughout statistics and geostatistics. The covariance between
random variables X and Y is written:

Cov{X,Y } = CXY = E{[X −mX ][Y −mY ]}
= E{XY } −mXmY

The expected value is a double integral over X and Y . In practice it is
calculated as a sum over available pairs. The covariance is a measure of
the closeness to a perfect linear relationship. If the linear relationship is a
direct one, then the covariance will be positive and if the relationship is an
inverse one, then the covaraince will be negative. Figure 1.20 illustrates this
scematically.

The covariance has the units of X multiplied by Y . It is common to con-
sider the correlation coefficient, that is, the standardized covariance that falls
within -1 and +1:

correlation ρ = CXY /(σX · σY ) ∈ [−1,+1]

If the bivariate data were bivariate Gaussian, then the covariance or corre-
lation with the variances would completely define the distribution. In many
practical cases, there are complex features in the data that make the covari-
ance an incomplete measure.
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Figure 1.20: Illustration of how a direct relationship leads to a positive co-
variance and an inverse relationship makes the covariance negative.

1. Outliers can enhance an otherwise poor correlation or reduce an other-
wise good correlation

2. Non-linear relationships would be captured to some extent by the cor-
relation coefficient, but the conditional distributions would have less
variance than implied.

3. Constraints from mineralogy or fractional measurements (total copper
and acid soluble copper, for example) are not fully captured by the
correlation coefficient.

4. The proportional effect or heteroscedasticity are not captured by the
correlation coefficient.

The correlation coefficient described above is sometimes called the Pearson
correlation coefficient - named after Karl Pearson a famous statistician. The
correlation coefficient is sensitive to extreme values (outliers) and an alterna-
tive was proposed by Charles Spearman. The Spearman correlation coefficient
is also known as the rank correlation coefficient. The idea is to rank trans-
form the both variables from 1 to n - preserving the order, then compute the
Pearson correlation coefficient on the rank order values and not the original
data values. The Spearman correlation coefficient could be used to establish
whether extreme values are destabilizing the correlation.

The correlation coefficient is not the coefficient of determination R2 although
it would be R if the distribution were bivariate Gaussian. it is better to
reserve the use of R2 for a measure of goodness in prediction. This will be
covered later.

Uncorrelated does not equal independence - there could be some dependence
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caused by one or more of the considerations mentioned above.

Correlation does not imply causation. This is a mainstay of modern statistics.
There are many examples including the correlation between crime rate and
number of places of worship per square kilometer. They may be related, but
through something else such as population density. Using variables without
cause and effect is still possible for prediction if the results are stable; just
not used for explanation.

1.4.3 Principal Component Analysis

Principal Component Analysis (PCA) is well established and very interestin-
gin modern data science and geostatistics. It is nice to see something novel
and interesting in the first week - aside from an overview and review of statis-
tics.

PCA is a classic dimension reduction and decorrelation technique that was
developed by Pearson [48] and Hotelling [33] and adapted to geostatistics in
the 70s and 80s. PCA transforms multivariate data that are correlated in an
arbitrary manner into orthogonal linear combinations of the original variables,
that is, factors that are all uncorrelated. It is useful to imagine rotation in
the high dimension space of the data. The position of the data in the high
dimensional space of the data does not change, but the new coordinates of
the PCA make the data appear uncorrelated. The direction where the data
show the most variance is the first principal component and they are ordered
in decreasing variance. The Lesson [4] by Ryan Barnett is a good place for
an overview.

The reasons to consider PCA are threefold.

1. Understand underlying factors - there are times when understanding
the principal components - the independent directions that explain the
variability in the data, explains aspects of the nature of the multiple
variables. This is sometimes possible with data in geostatistics.

2. Reduce dimension - the principle components are ordered in decending
order of the variance they explain. At a certain point, perhaps when
99% of the variance has been explained, the remaining pricipal compo-
nents can be dropped from the analysis.

3. Decorrelation - the principal components are uncorrelated with each
other and it is possible to simulate them independently, then the corre-
lation structure is reintroduced in the reverse rotation.

Consider K variables that are standardized (centered and scaled to have a
variance of one). This could be done by a simple standardization (subtract the
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Figure 1.21: Illustration of the rotation to make two variables (labeled X and
Y here) to appear uncorrelated.

mean and divide by the standard deviation) or by a normal score transform.
We would often consider an normal score transform since the shape of the
distribution and outliers are managed. The only reason to consider a simple
standardization is if kriging or some other linear technique is being considered
for the PCA factors.

From an intuitive or graphical perspective, PCA amounts to rotate the K
dimensional coordinate system to make the variables uncorrelated. The values
represented in the rotated space are referred to as principal components. This
is done by the spectral decomposition of the KxK covariance matrix of the
variables. The principal components are uncorrelated, but do not have unit
variance. They are ordered so that the first has the greatest variability and
the last has the least. Details of this are given in the fourth week (last
Chapter), but participants are asked to go through the steps here to gain an
understanding of covariance and multivariate data.

The concept of PCA linked to coordinate rotation is powerful. Think about
leaving the multivariate data at their locations and rotating the coordinates
so that the data appear uncorrelated (see Figure 1.14 for an illustration).
Rotation in a high dimension is difficult to imagine, but the analogy is correct.

The mathematics of PCA is based on the covariance (same as correlation
since the variables are standard) matrix of the original data: Σ. A spectral
decomposition of this matrix yields the directions of the PC factors (the
eigenvectors) and the variances in those directions (the eigenvalues):

Σ = VDVT

Where V is the matrix of eigenvectors and D is the diagnonal eigenvalue ma-
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Figure 1.22: Example plot of the cumulative variance explained versus the
PC number for 25 variables.

trix. The PC factors are computed by multiplying the data values (locations)
by the V rotation matrix.

The sum of the variances of the PC factors (the eigenvalues) is equal to
the sum of the variances of the original variables, that is, K. A plot of
the cumulative variance explained versus the principal component number
informs on whether or not dimension reduction is viable, see Figure 1.22 for
an example. Note that 11 PCs would explain 90% of the variance and 15
PCs would explain 95% of the variance. Also note in this example that if
15 PCs were chosen for geostatistical modeling, the 15 are combinations of
all variables (they are 15 vectors in a 25 dimensional space) and the back
transformation of the 15 would lead to 25 predicted variables.

The loading plot is a way to understand the directions of each principal
component in a high dimensional space. Simply looking at the components
of the Eigenvectors and Eigenvalues may be enough for some, but most of us
need a visual display. PCA leads to unique results, but a vector expressed in
a forward direction is mathematically (nearly) equivalent to a vector in the
reverse direction. The loading plot shows the importance of each principal
component and the contribution of each variable to each principal component.

Regarding the exercise, a normal score transform of the principal components
may impart some residual non-zero correlation between the transformed vari-
ables. This would not happen with multivariate Gaussian data, but real data
are rarely truly multivariate Gaussian.
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1.4.4 Exercise W1-4

The objectives of this exercise are to learn how to normal score transform
data, calculate a correlation matrix and apply principal component analy-
sis to determine orthogonal combinations of variables which account for a
large amount of variation. Consider the Ni, Fe, SiO2 and MgO variables in
nilat.dat.

1. Plot cross plots between all variables of interest.
2. Normal score transform the data. Note that you do not need to use

declustering weights for this exercise, but you may optionally also com-
plete this exercise with declustering weights to see if there are any dif-
ferences in the correlations.

3. Calculate a correlation matrix for the normal score transformed data.
Also plot the normal score bivariate distributions and comment on any
changes to the bivariate from Question 1.

4. Run principal component analysis on the normal score transformed vari-
ables to construct orthogonal linear combinations of the normal score
data.

5. See how the linear combinations are constructed and visualize the load-
ing of each variable on to the principal components to see which vari-
ables explain the greatest amount of variance in the data set.

6. Normal score transform the principal components and repeat Question
3. Compare the results and comment on any differences.
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Chapter 2

Variograms and Kriging

This week presents much of classic geostatistics. Variograms, volume variance
relations (change of support) and kriging are fundamental to spatial modeling
in presence of sparse data. A lecture plan for the second week:

Four Days Five Days

• The variogram
• Calculation
• Variogram volumes

• The variogram
• Calculation
• Variogram volumes

• Robust variogram estimators
• Variogram interpretation
• Variogram modeling

• Robust variogram estimators
• Variogram interpretation
• Variogram modeling

• Volume variance relations
• Additivity of variance
• Change of shape

• Volume variance relations
• Additivity of variance
• Change of shape

• Linear estimation
• Simple kriging
• Properties of kriging

• Review and Demonstration
• Linear Estimation
• Simple kriging

• Ordinary kriging
• Properties of kriging
• Review and Demonstration

39
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2.1 Variograms I

2.1.1 The Variogram

The variogram is the essential tool in geostatistics that quantifies the spatial
arrangement of a regionalized variable. Figure 2.1 illustrates the concept with
three images of 2500 locations where 140 locations have the same measured
values, yet the spatial continuity are quite different. The upper image is
quite random and the lower image is the quite continuous. The line charts to
the left illustrate the concept of variograms: the horizontal axes are distance
and the vertical axes are variability. The variability increases very quickly
on the upper image. Note that the distance where the variability reaches a
maximum (the range) is the same on all three images.

Two point statistics are used throughout geostatistics. The covariance and
correlation coefficient were presented in the previous chapter.

Cov{X,Y } = CXY = E{[X −mX ][Y −mY ]}
= E{XY } −mXmY

correlation ρ = CXY /(σX · σY )

The variogram is closely related to these measures. The variogram gained
popularity in early geostatistics because it was considered a more robust
alternative in presence of non-stationarity.

Central to the variogram is the concept of a vector lag distance h that is a
distance in a particular direction. Experimental pair separated approximately
the vector distance are assembled (see Figure 2.2 for a sketch that shows pairs
following a specified lag and tolerance - note that some data are used more
than once and some data are never used) and the variogram is calculated as
the expected value of the squared difference in the values separated by the
lag:

variogram 2γ(h) = E{[Z(u)− Z(u + h)]2}

The variogram is calculated for a set of lag distances to obtain a continuous
function. Figure 2.3 shows a geometric interpretation of the variogram - the
expected squared distance from the 1:1 line.

Under stationarity the variogram, covariance and correlation coefficient are
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Figure 2.1: Three images of 2500 locations where 140 locations have the
same measured values, yet the spatial continuity (sketches to the left) are
quite different.
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Figure 2.2: Illustration of scanning a lag vector (and tolerance) over a set of
data to find pairs that satisfy the lag constraints.

Figure 2.3: Illustration that the variogram is the squared distance from the
1:1 line.
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Figure 2.4: Concept of why variogram persisted instead of covariance.

equivalent tools for characterized two-point correlation:

2γ(h) = E{Z(u)2 − 2Z(u)Z(u + h) + Z(u + h)2}
= E{Z(u)2} −m2 − 2

(
E{Z(u)Z(u + h)} −m2

)
+ E{Z(u + h)2} −m2

= σ2 − 2C(h) + σ2

= 2σ2 − 2C(h)

The stationarity of the variogram lag over the domain allows experimental
pairs of data to be pooled to calculate experimental variogram values. This
assumption of stationarity is another form of second order stationarity that
includes directions and magnitudes of continuity.

Each h-scatterplot is summarized by an average squared difference and the
values are plotted together. Three h-scatterplots at different distances are
plotted to the right. The h-scatterplots may be useful to view in presence of
very few data; normally there are many pairs and there is little that can be
detected

2.1.2 Variogram Calculation

Variography involves (1) calculation, (2) interpretation, and (3) modeling.
The three overlap, but it is reasonable to learn about the steps in this order.
An important assumption of stationarity is embedded in the concept of the
variogram, that is, the spatial statistics depend on the lag separation vector,
but are independent of location. The expected variability between two lo-
cations separated by 120m in the North-South direction is the same for all
positions within the domain. This assumptions makes it possible to calcula-
tion variograms from the available data. The lag vector with some tolerance
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Figure 2.5: Illustration of three different lag scatterplots - from the bottom
(1) a value below the sill - positively correlated, (2) a value at the sill -
uncorrelated, and (3) a value above the sill - negatively correlated.
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is scanned over all pairs of data and the expected variability is calculated
directly. The concept that the lag vectors float and are anchored is a key
concept in variography.

Another key concept that arises from the previous lecture is that of the sill.
The scalar variance of the data entering variogram calculation is important.
When the variogram is below that value, the pairs of values are positively
correlated. When the variogram is above that value, the pairs are negatively
correlated. Although variogram interpretation comes later, there is inevitable
overlap in the steps and this is fundamental for interpreting the variogram.

Calculating variograms for regularly spaced data is straightforward. Irreg-
ularly spaced data is more challenging because of the tolerance parameters
required. The basic parameters are covered in a Lesson [24]. Another Lesson
covers details for tabular deposits [25].

Step One: Choosing Directions. Geological variables are anisotropic. An
initial challenge in variogram calculation is to determine the three principal
directions of continuity. Section 1.3.2 explained the concept of anisotropy,
but our understanding of anisotropy often comes from variogram calculation.
Considerations in choosing the principal directions for variogram calculation
include:

1. Start with an omnidirectional variogram, that is, for all directions com-
bined together considering the tabular nature of the deposit - no point
combining the vertical with the areal in a stratigraphic deposit of 100:1
horizontal to vertical anisotropy. A well crafted omnidirectional var-
iogram (perhaps in the plane of greatest continuity) often yields the
most well-behaved variogram.

2. Visualizing the data within the context of solid conceptual geological
model may provide the most important information. The variograms
may not be the best, but having variograms highly consistent with the
geological conceptual model is essential. Reviewing the data in 3-D and
in 2-D maps and sections is very useful. Visualizing data at scattered
locations in 3-D is difficult. Often, we would build a neutral model by
kriging or with inverse distance and visualize that model - thresholding
high and low values to highlight important structures.

3. Choose directions based on orientation of geological unit. There is no
guarantee that the short scale variogram structure would follow the
larger scale orientation and size of the geological domain, but that is
reasonable. This is often self-fulfilling since the variogram range would
always look longer in directions where the domain is larger and there is
more possibility of finding pairs.

4. Consider multiple directions before choosing a set of 3 perpendicular
directions (major horizontal direction and two perpendicular to major
direction). A trial-and-error approach is susceptible to the data config-
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uration and random chance.

The creation of a neutral model as mentioned in step 2 can be important. The
variogram or anisotropic parameters should not have an inordinate influence
on the final model. In presence of a tabular deposit, then the interpola-
tor should be isotropic in the plane of the structure and with a reasonable
anisotropy relative to the direction of least continuity., Ordinary kriging with
a variogram showing 30% nugget (to filter high frequency variations) and a
range one half of the domain size (to show long range structure) works well.
Global inverse distance with appropriate anisotropy parameters works well.

Step Two: Choosing Lag Paramters. The unit lag separation distance
should coincide with data spacing (the close data spacing if there is any
flexibility). This would be chosen differently in each principal direction de-
termined in the previous step. The lag tolerance is typically chosen to be one
half of the unit lag separation distance except when (1) the data are very
regularly spaced and a smaller tolerance can be considered, or (2) when there
are few data and erratic variograms and a tolerance more than one half of
the unit lag may be chosen to provide more stable variograms.

Multiple lag distances and lag tolerance parameters may be required when
there are multiple nested grids of data spacing. For example, there may be
a larger data spacing over the entire domain and a smaller data spacing in a
smaller area of greater interest. Then, some lags at the small data spacing
should be considered and some lags at the larger data spacing should be
considered. A different lag tolerance would be chosen for the small and large
lag spacing. The experimental variogram values from both spacings would be
combined in variogram interpretation and modeling.

The number of multiples of the unit lag must also be chosen. This depends
on the direction. In general, less than 10 lags are always relevant - larger
distances have little input to local prediction (although highly irregular data
spacing may override this). In addition to this rule of 10, the variogram is
only valid for a distance one half of the field size. So, we choose the number
of lags accordingly.

Another practical detail in variogram calculation is that we would start with
the most informed direction - often the down-hole or vertical variogram, then
move to directions that are less well informed.

Step Three: Choosing Direction Tolerance. The angle tolerance for di-
rections is required - if the plane of continuity being considered is reasonably
isotropic, then this could be as large as 25 degrees. In the case of tabular
deposits, the bandwidth parameters perpendicular to the plane of greatest
continuity is important. Flattening the vertical coordinate is essential be-
fore variogram calculation, then the bandwidth perpendicular to the plane of
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Figure 2.6: Illustration of the parameters used for variogram tolerance spec-
ification. The plane of greatest continuity may not be horizontal, but it is
labelled as such in the figure.

continuity could consider the data spacing (a few multiples) or the vertical
variogram range (keep with 1/3 of the vertical variogram range). In general,
we would restrict as much as possible.

The tolerance parameters in variogram calculation must be chosen carefully.
If the tolerance is too large, then the variogram may be stable, but it is not
precise and not representative of the underlying spatial distribution. If the
tolerance is too small, then the variogram may be precise, but it perhaps too
noisy to infer the true underlying spatial structure. All calculation parameters
should be considered carefully.

2.1.3 Variogram Calculation Challenges

Tabular deposits are extensive in two dimensions and limited in a third dimen-
sion. Some considerations include (1) unfolding or stratigraphic coordinates
are important to allow the variogram to follow undulations in the tabular
structure, (2) careful setting of the variogram tolerance for variograms within
the plane of the structure is important - using a limited bandwidth perpen-
dicular to the plane of continuity.

Variogram volumes can be useful. The concept is to consider polar coordi-
nates - a lag of zero is at the center of the plot. Then different lags in diferent
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Figure 2.7: Example of three sections through a variogram volume. The three
maps are XY, XZ and YZ slices (variogram maps) slices through the origin.

directions can be considered in Cartesian or radial coordinates. Contours of
the variogram values in different planes may be informative on the directions
and magnitude of anisotropy. Only sections through the origin are mean-
ingful - any other is anchored to a lag not showing on the plot. Figure 2.7
shows an example. This variogram volume was constructed from a neutral
model kriged with an isotropic variogram. Any anisotropy shown is due to the
data. Directional variograms would be calculated in the principal directions
identified from the variogram volume.

Standardization of the variogram should be discussed with some preliminary
remarks made about the sill. Standardizing the variogram should almost al-
ways be performed - making the expected sill equal to one makes interpretaion
and other analysys straightforward. Two situations where we would not stan-
dardize the sill are (1) when checking variogram reproduction in simulation -
fluctuations in the variance are expected and part of variogram reproduction,
and (2) when performing exploratory data analysis with different data types
of the same variable in the same domain. Understanding the difference in
variance is important.

This would also be the setup and explanation of the data considered for the
exercise. Perhaps a demo of variogram calculation.

2.1.4 Exercise W2-1

Variograms are very important in a geostatistical study. They specify the
spatial correlation that the grades are expected to have. Directional vari-
ograms must be calculated with parameters that lead to stable and reliable
experimental variograms. The objective of this exercise is to calculate and
interpret variograms. Any software can be used. Consider the bitumen grade
in the oilsands.dat file. Please consider the bitumen grades directly rather
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than the normal scores transform.

1. Review the spatial arrangement of data with relevant plots (such as a
plan view and cross sections). Comment on the anticipated directions
for variogram calculation. Discuss the selection of variogram parame-
ters such as the angle tolerances, lag spacing, and lag tolerance. Pay
particular attention to the parameters that will be required for horizon-
tal variogram calculation.

2. Calculate and interpret the vertical variogram. What is the vertical
range? What vertical bandwidth do you consider relevant for horizontal
variogram calculation?

3. Calculate and interpret an omnidirectional horizontal variogram. Per-
form a sensitivity to the vertical angle and bandwidth parameters, which
are very important in such relatively flat stratigraphic formations.

4. Discuss the selection of directions for horizontal directional variograms.
Calculate and plot a horizontal variogram map. Choose the bin size
reasonably big and choose relatively few lags: many variogram maps
are too noisy to be useful. Take care and try to get a stable variogram.

5. Calculate and interpret horizontal directional variograms. Choose ma-
jor and minor orthogonal horizontal directions for the variograms.

2.2 Variograms II

2.2.1 Robust Variogram Estimators

There are two primary reasons why the variogram is not a good estimator of
the variogram:

1. Clustered data and the proportional effect: high valued areas may be
drilled preferentially so there are more short scale pairs in those areas.
The proportional effect is when the local variance is dependent on the
local mean. High values areas are more variable when the distribution
of grades is positively skewed. Thus, the early lags in the variogram
calculation are higher than expected making the variogram appear to
show less structure. Figure 2.8 illustrates this.

2. The unequal use of extreme values in different lags: when an extreme
value enters a variogram lag, the squared difference increases signifi-
cantly. This is not wrong - in fact, fairly representing extreme values
is essential in modern geostatistics. The challenge occurs when the
extreme values enter different lags differently; the variogram becomes
noisy. This happens because of the specific data configuration and cal-
culation parameters.
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Figure 2.8: Illustration of how the proportional effect and clustered data
impacts the variogram. The upper left sketch shows a stationary area A
with data denoted by red dots and local areas denoted by blue circles. The
distribution on the lower left shows a positively skewed distribution. The
central scatterplot shows one example of the proportional effect, that is, the
dependence of the standard deviation on the mean. To the right is a variogram
showing increased variability for the closely spaced lag due to clustered data
in high valued areas and the proportional effect.

A robust variogram estimator with the longest history is the pairwise relative
variogram [11, 3]:

2γPR(h) = E

{
(Z(u)− Z(u + h))

2

((Z(u) + Z(u + h) /2)
2

}

this has proven effective in many geological environments with highly skewed
distributions and clustered data. A historical challenge was that the sill is un-
known; however, we can easily determine the sill by sampling a large number
of random paris and calculating the pairwise relative variogram. This is done
automatically in most modern software. A criticism of the pairwise relative
variogram is that it is not theoretically justified. There is some validity to
this criticism.

A more defendable alterternative is to consider the correlogram [34, 56]:

2γCO(h) = 1− E {[Z(u)−m(u)][Z(u + h)−m(u + h)]}√
E {[Z(u)−m(u)]2}E {[Z(u + h)−m(u + h)]2}

the use of lag dependent means and variances can make the correlogram
more stable than the variogram. The correlogram does not always work and
tends to unreasonably dampen the influence of trends and zonal anisotropy.
The correlogram appears more theoretically defendable , but future volume



2.2. VARIOGRAMS II 51

variance relations and kriging do not consider lag dependent parameters.
Also, the correlogram does not capture zonal anisotropy very well.

A third alternative is to consider the normal score variogram (then back trans-
form with MCS for each lag assuming equal representivity). The back trans-
form of the normal scores variogram will be explained. After normal score
transform there is no proportional effect and no outliers. The experimental
normal score variogram may be very stable. If we were to back transform
the exact pairs going into each lag of the normal score variogram, then the
result would not change, but we assume that the correlation is representative
and back transform a series of bivariate distributions with the same marginal
distribution. This leads to a stable variogram back in original units. This is
theoretically correct and fairly common at the present moment [22].

In practice, the pairwise relative variogram is hard to beat. The back trans-
formed normal score variogram is a theoretically defendable alternative, but
in presence of challenging data the pairwise relative variogram may provide
the best input to kriging.

2.2.2 Variogram Interpretation

Variogram interpretation consists of explaining the variability over different
distance scales. The variogram is a chart of variance versus distance or geolog-
ical variability versus direction and Euclidean distance. Based on seeing other
variograms understanding site-specific considerations, we must establish the
reasonableness of the variogram

Some variogram terminology is important. The sill is the scalar variance
of the data used in variogram calculation, see [29]. The sill is one if the
variogram has been standardized or normal score data are used. In presence
of stationary data, the variogram would flatten off at the variance. It is not
practical to think of the sill as where the variogram flattens off because the
experimental variograms may go above the sill variance or stay below the
sill variance in different directions. The precise choice of the sill does not
influence ordinary kriging, but has a significant influence on other types of
kriging and on simulation. Consider the variance of the data or one if the
variogram has been standardized.

The range is the distance at which the variogram reaches the sill (the first
time) if it reaches the sill. The range is a very blunt instrument since the
variogram can approach the sill at different slopes. Figure 2.9 illustrates
a case where a variogram with a long range represents a variable with less
continuity. The range is a well known parameter, but must be considered
with the entire variogram shape.
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Figure 2.9: Illustration of two variograms with different ranges. The red
variogram has a twice the range, but reflects a variable with less continuity
because of its short scale behavior.

The nugget effect is a variogram fitting parameter that is a discontinuity at
the origin of the variogram. See the Lesson [7]. Some data have nuggety
characteristics where some samples have a nugget of mineralization and adja-
cent samples do not; then, the variogram will show an abrupt jump at short
distance. The nugget effect is not the variability wihin a sample; it is the
variability between adjacent samples that are non-overlapping. Compositing
the data to larger scale leads the nugget effect to be smaller since there is
more averaging within the sample lengths. The nugget effect is a fitting pa-
rameter of variogram model when the variogram is extrapolated back to a lag
of zero. It is a scalar parameter, that is, independent of direction.

The four elementary signatures of variogram interpretation are shown on
Figure 2.11:

1. Trends. When the variogram goes about the expected sill by a signifi-
cant amount (20%), then the variogram is indicating a negative corre-
lation at large distance which is called a trend.

2. Cyclicity. When the variogram oscillates above the sill and below the
sill at a fixed length scale of periodicty, the we call this cyclicity (or
periodicity or the hole effect). It would be observed drilling through
a stacked succession of different units that have alternating high and
low values spaced about the same amount. The distance where we see
the first trough should be at twice the first peak and the second peak
should be at three times the the distance of the first peak. Figure 2.10
shows two examples of cyclical variograms.

3. Geometric anisotropy. When the shape of the variogram is the same in
different directions, but the length scale is different. An affine transfor-
mation of coordinates - stretching and squeezing after rotation - would
make the directional variograms look approximately the same. Geo-
metric anisotropy is a natural characteristic of many phenomenon. For
example, in a stratigraphic environment, we would naturally expect a
horizontal to vertical anisotropy of 100:1 (sometimes less and sometimes
more, but that is a good rough estimate). Anisotropy is common in vir-
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Figure 2.10: Two examples of cyclical variograms from a scanned rock (left)
and outcrop measurements (right).

Figure 2.11: The four elemetary signatures of variogram interpretation.

tually all depositional and diagenetic influenced spatial distributions.
4. Zonal anisotropy. The apparent sill in one or more directions falls signif-

icantly below the expected sill. The classic example is a tabular deposit
where there is some internal ”zonation” within the formation, that is,
higher values at the top (or bottom or middle) that persist across the
entire study area. Then, the horizontal variogram will see persistent
positive correlation over large distances - the horizontal sill will not
reach the expected sill. The vertical variogram will show something
else - likely a trend or large scale cyclicity.
The zonal anisotropy can also manifest as the vertical variogram not
reaching the expected sill. This would occur in presence of horizontal
trends.

A geometric anisotropy at one scale may appear as a zonal anisotropy at
another scale. The variogram and its interpretation depends strongly on the
size of the domain.

A normal variogram that leaves a low and normal nugget effect, rises toward
the sill, then plateau’s at the sill is very rare. Real variograms show combi-
nations and superpositions of all of the variogram signatures mentioned.

A strong trend or zonal anisotropy may indicate that trend modeling, re-
moval of the trend, then modeling the detrended variable may be in order.
Increasingly, with the improved trend modeling and modeling with a trend
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Figure 2.12: Sketch of experimental variogram points (black dots) that are
overfit (blue line) and fit reasonably (red line).

algorithms available, this is a recommended approach.

2.2.3 Variogram Modeling

Variogram modeling amounts to fit a smooth function to the variogram. The
variogram model is closer to the true variogram than the points themselves!
Variogram modeling is not like curve fitting. The true variogram (if it were
available) would be a smooth function with distance. The variogram is an
expected behaviour, but the variability that would be seen in the underlying
random function. Another important aspect of variogram modeling is shown
on Figure 2.12, that is, the goal is not a strictly close fit to the data - some
smoothing through variations in the experimental variogram is desired. The
true variogram is going to be smooth and the variogram model is aimed at
the true underlying variogram and not over-fitting the experimental points.

There are three main reasons to model a variogram:

1. Need to know the variogram for all distances and directions (γ(h)∀h) -
not just the ones calculated. The variogram function must be extrap-
olated in distance and direction. We focus on the principal directions
and the lags we can calculate, but we need the variogram for all possible
lags in kriging and simulation.

2. Incorporate additional geological knowledge (analogue information or
information on directions of continuity and so on).

3. The variogram model must be positive definite (a legitimate measure
of distance) for subsequent estimation and simulation. This is easy to
understand mathematically, but for practical purposes it means that the
variogram as a distance measure is a valid one. Example of non-physical
distances will be presented.

The need for a positive definite function may be the least of the three reasons



2.2. VARIOGRAMS II 55

presented above, but it drives the choice of a mathematical model. There
are an infinite number of positive definite variogram models, but we choose
to use a few functions that are commonly encountered and mathematically
simple, see Figure 2.13. We can combine them in multiple structures to give
us all the flexibility we could ever imagine. The four most common variogram
shapes:

1. Nugget effect: a value of zero at h = 0, then a constant. This is for
that aspect of the regionalized variable that is completely random.

2. Spherical variogram: this is the most common of the family of geometric
variogram models, that is, one minus the volume of intersection of two
geometric objects:

Sph(h) = 3/2h− 1/2h3 for h ≤ 1; 1, otherwise

any geometric shape could be used, but the resultant variogram shape
from the spherical variogram is sufficient.

3. Exponential variogram: one minus a standardized exponential decay
function is also commonly seen for quite eratic variables such as perme-
ability or hydraulic conductivity.

Exp(h) = 1− e(−3h)

4. Gaussian variogram: the exponential function could be raised to any
power between 0 and 2. The limit variogram function at a power of 2
would lead to the Gaussian variogram (named because of the mathemat-
ical form and not because of any intrinsic connection to the Gaussian
distribution):

Gauss(h) = 1− e(−3h
2)

This variogram is parabolic near the origin and suitable for continuous
variables such as thickness and surface elevations.

Modeling with a linear model of regionalization(LMR) for different structures
and positive definiteness:

Z(u) =

nst∑
i=0

biYi(u) γ(h) =

nst∑
i=0

ciγi(h)

where i = 0 is nugget by convention. Each structure is defined by a shape
and six anisotropy parameters (three angles and three ranges - see Section
1.1). The common shapes are described above. Considering that anisotropy
is outside of variogram modeling, that is, it is specified per structure and it
modifies how the ”standardized isotropic distance” is calculated is relevant.

Variogram modeling amounts to picking a single (lowest) isotropic nugget
effect, choosing the same number of variogram structures for all directions
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Figure 2.13: The four commonly used variogram model shapes.
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Figure 2.14: Standardized horizontal and vertical variograms for the bitumen
grade in an oilsands deposit.

based on most complex directions, ensuring that the same sill parameter is
used for all variogram structures in all directions, and allowing a different
range parameter in each direction. A zonal anisotropy by setting a very large
range parameter in one or more of the principal directions.

Figure 2.14 shows experimental and model variograms for bitumen grade in
an oilsands deposit. This fit was chosen manually with some iteration. The
parameters of the fit are specified in the table below. Note that there are three
spherical structures (type 1). The total number of parameters for a variogram
model includes the number of structures, the nugget effect, the sill and eight
parameters per structure (three angles, three ranges, the type/shape and the
contribution). The sill is not always specified independently although that
would be considered best practice.

3 0.0 1.0 -number of structures, nugget, sill

1 0.2 45.0 0.0 0.0 -type, contribution, ang1, ang2, ang3

100.0 100.0 23.0 - major, minor, tertiary ranges

1 0.35 45.0 0.0 0.0 -type, contribution, ang1, ang2, ang3

1100.0 1100.0 23.0 - major, minor, tertiary ranges

1 0.45 45.0 0.0 0.0 -type, contribution, ang1, ang2, ang3

25000.0 5000.0 23.0 - major, minor, tertiary ranges

An important topic in data poor areas of geostatistics is how to infer a vari-
ogram in presence of sparese data. This is particularly relevant for variogram
models in stratigraphic settings (petroleum reservoirs) with few wells. An es-
tiamte of the zonal anisotropy and the geometric anisotropy of each structure
is required.

There are software that mimics the iterative procedure performed by the
varigoram modeler, varying the different parameters that define a variogram
model. The nugget effect, sill contributions, structure types and ranges, are
fit to experimental variogram points in up to three directions simultaneously.
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The user can fix any subset of parameters. This is useful when the exper-
imental variograms are well defined, but expert judgement is always to be
considered.

A variogram model is specified by the number of structures, the nugget effect
and (for each structure, the contribution, the shape and six anisotropy pa-
rameters (three angles and three ranges). This is a very efficient compression
of the variogram information.

When there is doubt as to the most correct variogram model, then we consider
(1) fidelity to the geology and the regionalized variable, (2) simplicity - simpler
is better,

Variogram modeling is one of the most important steps in a geostatistical
study - all spatial inference depends on model of spatial variability / conti-
nuity.

2.2.4 Exercise W2-2

The objective of this exercise is to gain experience and confidence in the
experimental calculation, interpretation and modeling of variograms for a
number of data sets.

1. Consider the directional horizontal and vertical variograms experimen-
tally calculated in exercise W2-1 for bitumen with the oilsands.dat data
set. Fit the variograms. Tabulate your variogram model parameters and
comment on the uncertainty in the variogram model parameters.

2. Calculate, interpret and model the variogram of Au in skarn2d.dat (2-
D).

3. Calculate, interpret and model the variogram of Au in Misima.dat (3-
D).

2.3 Change of Support

2.3.1 Scales of Relevance

Change of support or volume variance relations relates to understanding what
happens at a larger scale given data and information at a smaller scale. The-
oretically we may think of going down in scale, but the reality is that we
drill and observe variability at a small scale and we wish to predict what is
happening at a large scale of relevance. The data within reasonably station-
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ary domains provides a representative distribution through declustering and
a representative variogram model. These statistical parameters relate to the
scale of the data. Engineering considerations lead us to consider a selective
mining unit (SMU) that effectively represents a scale relevant for resource
and reserve assessment. The SMU scale (often denoted v) may be 4 to 9
orders of magnitude larger than the scale of the data. We aim to predict
what would be the representative distribution at that larger scale. This has
significant consequences on resource and reserve estimation.

This is particularly important when there are no block data [46]. A theoretical
prediction of the change of support may all we have. The main reasons why
we consider this topic include (1) the resources and reserves we compute and
report are to reflect future mining and production, (2) there are no block
data available early in the pre- and feasibility studies of a deposit, yet we are
to represent that scale, (3) resources depend very strongly on the production
volume and the inevitable smoothing that occurs as we consider statistics
representing larger volumes, (4) we would like to know how much smoothing is
acceptable in the application of conventional geostatistical (or any) estimation
algorithm, that is, we would often want to calibrate our resource estimation
to anticipate future selectivity and provide unbiased block estimates, and (5)
we would like a check on advanced simulation, UC, MIK and other prediction
algorithms.

The choice of an SMU (v) size is most relevant to open pit mining. It could
be used for underground, but the less constrained selection of open pit is
more amenable to the underlying assumptions. The considerations include
(1) the mining method - more flexible means smaller SMU size, (2) the mining
equipment - smaller and more flexible means smaller SMU size, (3) blasting
practice - more agressive blasting with larger movement means larger SMU
size, (4) production sampling - more and better production sampling would
imply a smaller SMU size, (5) visual control on the ore and the availability
to support mine operations in the visual control - better control would im-
ply a smaller SMU size, and (6) various other mining operations including
the attention of management, mining at night near contacts, the bonus and
incentivization schemes - as expected. The Lesson on change of support is a
useful reference [32].

2.3.2 Volume-Variance Relations

The first key principle is additivity of variance expressed with dispersion
variances:

D2(v,A) = D2(v, V ) +D2(V,A) where |v| < |V | < |A|



60 CHAPTER 2. VARIOGRAMS AND KRIGING

A demonstration will be given that proves the additivity of variance. The key
principle is that the variance of composites within the stationary domain is
equal to the variance of composites within the SMU volume and the variance
of SMU volumes within the domain. The variance of SMU volumes within
the domain is a goal of volume variance relations.

The variance is often written as D2(·, A) = σ2, that is, the conventional
variance of a variable is interpreted as the dispersion variance of point samples
within the domain.

Second, the volume averaged variogram is defined for two different volumes,
perhaps at different locations:

γ(V, v) =
1

|V | |v|

∫
V

∫
v

γ(x− y)dxdy

This could be used for general calculations including estimation variance and
for populating block kriging equations with data of different support. For
change of support calculations, the volume average variogram of a volume
with itself, that is, of v if v = V is particularly important. It is the expected
variance of points within the SMU volume:

γ(v, v) = D2(·, v)

Attempts have been made to solve the integrals requried for the volume av-
eraged variogram, but the modern approach is to discretize the volume and
solve for the integral numerically. A discretization of 5x5x5 is adequate (Les-
son on discretization could be referred to [57]). If the number of discretization
points is made too big, then numerical precision errors can become significant.
The discretization in the direction of drilling should consider the composite
length relative to the SMU size. For example, if the composites are 5m long
and the SMU is 15m large, then the discretization should be set to three - an
even multiple (or close to one) of the number of composites for the volume.

The reduction in variance could be summarized as a ratio:

f =
D2(v,A)

D2(·, A)
=
D2(·, A)− γ(v, v)

D2(·, A)
=

1− γ(v, v)

σ2

So, for change of support the mean stays the same, the variance reduces by a
predictable amount and the shape of the distribution becomes slightly more
Gaussian.

Before reviewing change of shape options, the fact that compositing dramat-
ically reduces the nugget effect is practically important. The variance of the
average of n random numbers is σ2/n. This classic result will be demon-
strated. FIn the context of compositing, the nugget effect will go down by
a multiple of the length being composited, for example, if 1m samples are
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composited to 4m, then the nugget effect of the 4m samples is 1/4 that of the
1m samples. The structured part of the variance remains mostly unchanged
because of the small scale of averaging. The nugget effect could be estimated
by compositing to different lengths and observing the change in variance. The
nugget effect for composites at a certain length would be C0,l = 2(σ2

l − σ2
2l)

considering the variance at the length and at doube the length.

2.3.3 Change of Distribution Shape

The classical techniques should not be used. Assuming the shape of the
distribution does not change (the affine correction) is entirely unrealistic.
Assuming the values are lognormal and there is some kind of preservation of
lognormality (the indirect lognormal correction - ILC) is also entirely unreal-
istic. The discrete Gaussian model (DGM) is more complicated, but provides
very stable estimates of distribution shapes for larger volumes.

As a recall. The affine correction zv =
√
f(z − m) + m assumes no shape

change and is very unrealistic due to an artificial minimum and no convergence
to a Gaussian distribution as the scale goes up. The Indirect Lognormal

Correction (ILC): z
(1)
v = a zb

b =

√
ln(f · CV 2 + 1)

ln(f · CV + 1
a =

m√
f · CV 2 + 1

[√
CV 2 + 1

m

]b

z(2)v = z(1)v ·
m

m1

provides for unrealistic shape change in upscaling, but is surprisingly useful
for downscaling. For upscaling, the DGM more general and flexible.

The discrete Gaussian model may not be mathematically simple, but it is
powerful and very practical. Discrete Gaussian model (DGM) is based on
Hermite polynomials:

zv =

np∑
p=0

φpHp(y)

Hp(y) =
1√
p!g(y)

dpg(y)

dyp

H0(y) = 1 H1(y) = −y H2(y) =
1√
2

(y2 − 1) H3(y) =
−1√

6
(y3 − 3y)

recursive equation for more:

Hp+1(y)− −1√
p+ 1

yHp(y)−
√

p

p+ 1
Hp−1(y)
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since the Hs are independent and standard the variance :

σ2 =

np∑
p=1

φ2p

The diffusion and mosaic models for change of support (r values are deter-
mined by trial and error):

φv,p = rpDφp φv,p = rMφp

The diffusion and mosaic models are characterized by:

γ1(h)√
γ(h)

=
C1√
C

γ1(h)

γ(h)
=
C1

C

the barycentric model is in between the two. A measure of dissemination
(1=D, 0=M) could be calculated:

β(h) =

(
γ1(h)

C1
− γ(h)

C

)
/

(√
γ(h)

C
− γ(h)

C

)
φv,p = (βer

p
B + (1− βe)rB)φp

Most practitioners use the diffusion model and stop there. The use of the
mosaic model or a blend between the two (the barycentric model) may be
useful in certain cases. In practice, much upscaling is done by simulating at
a high resolution, then averaging to larger volumes.

2.3.4 Exercise W2-3

The objective of this exercise is to learn how to scale variances with average
variogram values and to review the common change of shape models. Av-
erage variogram or gammabar values tell us the variance at any scale. The
discretization required for stable numerical integration is a consideration.
Average variogram values can be calculated between two disjoint volumes V
and v; however, classic histogram and variogram scaling requires the average
variogram to be calculated for V = v, that is, for the same volume and itself.

1. Write a short review of the key theoretical results needed for variogram
scaling: (1) the definition of the average variogram or average covari-
ance, (2) the definition of the dispersion variance and the link to the
average variogram, and (3) the additivity of variance.

2. Consider the Au variable from Misima.dat. Consider the variogram
model from a previous exercise and a 10m by 10m by 10m block size.
Create a plot with the average variogram versus discretization level
starting with 1x1x1 and going to 6x6x6 in increments of 1.
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3. Calculate the average variogram for block sizes of 5x5x5, 10x10x10,
15x15x15, 25x25x15 and 50x50x15. Plot and tabulate (1) the average
variogram versus block size, and (2) the block variance versus block
size.

4. Consider a block size of a 10m by 10m by 10m. Calculate the scaled
distributions using the (1) affine, (2) indirect lognormal, and (3) discrete
Gaussian models. Plot the original Au histogram and all of the scaled
histograms. Comment on the results.

2.4 Kriging I

2.4.1 Linear Estimation

The context is to estimate a continuous rock property at an unsampled lo-
cation using the available data in the domain. The data are denoted as a
set:

n : z(uα) = zα, α = 1, . . . , n

statistical parameters have been inferred from the data including:

F (z), m, σ2, γ(h), and C(h) = σ2 − γ(h)

An unsampled location is denoted u�. A linear estimator at the unsampled
location is written:

z∗� −m =

n∑
α=1

λα[zα −m]

This assumes that the mean is stationary. The weights also depend on the
unsampled location and should more properly be written λα(u�). We are not
fitting a linear function to the data; we are computing the best linear estimate
at each unsampled location. Taken together, the best estimates form a highly
non-linear surface. We could consider the residual from the mean Y = Z−m
to simplify notation:

y∗� =

n∑
α=1

λαyα

A good estimate could be calculated considering an inverse distance scheme
for the weights:

λα =

(
1

hα,�+0.5

)1.5
∑n
β=1

(
1

hβ,�+0.5

)1.5
where hα,� is the standardized Euclidean distance (see Chapter 1) between
data α and the unsampled location �. The small constant of 5% to the
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Figure 2.15: Classic sketch of kriging setup.

range is for stability and to mimic a small nugget effect. The power of 1.5
has proven itself in cross validation studies although a higher power would
lead to less smooth estimates. Considering global inverse distance would lead
to a very reasonable (good) artifact free model. The goal of geostatistics to
calculate the best estimate.

There are many different criteria for the best estimate, but the quadratic loss
L(e) = e2 is practical and unbiased (a recall of the theorem that ”among all
estimators, the one that minimizes the squared error criterion is unbiased”
will be reviewed in class. Minimizing mean squared error (MSE) is equivalent
to maximizing the coefficient of determination R2. So, our definition of a best
estimate is one that minimizes error variance (MSE):

σ2
E = E

{
[Y ∗ − Y ]2

}
Considering absolute error leads to a bias. Introducing asymmetric penalties
for positive and negative errors would also lead to a bias. Risk aversion or
opportunity seeking would be considered after predicting a local distribution
of uncertainty (see Chapter 4).

2.4.2 Estimation Variance and Simple Kriging

The error variance can be expanded into three terms:

σ2
E = E{Y ∗2� − 2Y ∗�Y� + Y 2

�}

= E


n∑
α=1

n∑
β=1

λαλβYαYβ − 2

n∑
α=1

λαYαY� + Y 2
�


=

n∑
α=1

n∑
β=1

λαλβCαβ − 2

n∑
α=1

λαCα� + σ2
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the first term assesses the redundancy between the data - greater redundancy
leads to higher error. The second term assesses the closeness between the data
and the unsampled location - the closer the data to the location being esti-
mated leads to lower error. The third term is the stationary variance if there
are no nearby relevant data - a lower the stationary variance (homogeneous
domain) is better - everything else being equal.

The kriging equations are derived by taking the derivative of the error variance
with respect to each of the weights and setting them equal to zero:

δσ2
E

δλα
= 2

n∑
β=1

λβCαβ − 2Cα� = 0, α = 1, . . . , n

n∑
β=1

λβCαβ = Cα� α = 1, . . . , n

Solving these equations leads to a set of weights λα, α = 1, . . . , n that lead to
the minimum error variance estimate. This formalism was called Simple Krig-
ing (SK) by Georges Matheron because of the fundamental essence/simplicity/lack
of constraints. This form of estimator is also called the Kalman Filter, Opti-
mal Interpolation and the Normal Equations in different contexts.

A demonstration in class at this point shows both cross validation and esti-
mation on a grid. The estimates are smooth and converge to the mean far
from data.

2.4.3 Properties of Kriging and Ordinary Kriging

There are many remarkable properties of kriging that include:

• Kriging minimizes the error variance by construction: check the second
derivative of the error variance with respect to the weights - the result is
2σ2 for all weights which is always positive - therefore we are minimizing.

• The variogram/covariance model for the minimization of error variance
is data driven (the experimental variogram points) and model driven
(interpolation and extrapolation of the variogram to all distances). This
makes it very hard to find an estimator with lower error variance.

• Existence and uniqueness: provided there are no data at exactly the
same location and provided that we are using a positive definite covari-
ance function C(h), the existence and uniqueness of the solution can be
established.

• Exactitude: the estimate z∗(u�) = z(uβ) if u� = uβ . This can be
shown easily from the existence and uniqueness of the kriging estimate.
In these days of machine learning (ML) it is worth emphasizing this
property. ML estimates do not have the property of exactitude.
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• Block kriging: any shaped blocks can be kriged by discretizing them
with points, replacing the variance by the block variance σ2 = D2(v,A),
and replacing the right hand side covariances by averages to the dis-
cretization point locations: Cα� = C(α, v�).

• Linearity of kriging: kriging can be applied with point and block data.
The block data could be any dimension or geometry - contiguous or not.
Also, kriging a block directly with one system of equations or kriging
each discretization point, then averaging the point estimates leads to
exactly the same result.

• Kriging with kriged estimates gives the same estimate. Clearly the
minimized estimation variance or the kriging variance is lower, but the
estimate is exactly the same. Consider kriging at any location u using n
data. Then, krige at location u′ with the same n data. Finally, krige at
location u using the n data plus the estimate at u′. The final estimate
and first estimate are exactly the same.

• Simplified σ2
SK = σ2 −

∑n
α=1 λαCα�. The result of simple kriging and

the equation for the minimization of the error variance can be combined
and the minimized error variance shown with this simpler equation.

• Kriged estimates are smoother than the random function, that is, V ar{Y ∗�} =
σ2 − σ2

SK . The variance should be σ2, but it is reduced by the kriging
variance. The higher the kriging variance, the smoother the estimate.
This makes sense since the kriging variance is higher when there are
fewer nearby conditioning data.

• Covariance reproduction, that is, E{YαY ∗�} = Cα�. Although the vari-
ance of the kriged estimates is too small, the covariance between all
kriged estimates and all of the data is correct. This is sometimes used
as a basis for sequential simulation; however, a better basis would be
the recursive decomposition of the multivariate.

Ordinary kriging, discussed below, starts to impose constraints on the kriging
estimator. Many of the properties listed above will only apply approximately,
but the estimator may be improved.

Ordinary Kriging

The standard linear estimator:

z∗� −m =

n∑
α=1

λα[zα −m]

is reorganized to collect the terms applied to the mean:

z∗� =

n∑
α=1

λαzα +

[
1−

n∑
α=1

λα

]
·m
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The global mean m may be well known, but it may not be appropriate locally.
The weight to the mean is constrained to equal zero while minimizing the error
variance.

z∗� =

n∑
α=1

λαzα

minimize:

n∑
α=1

n∑
β=1

λαλβCαβ − 2

n∑
α=1

λαCα� + σ2

subject to 1−
n∑
α=1

λα = 0

The Lagrange formalism is introduced, that is, to minimize f(x) subject to
g(x) = 0, we minimize h(x)+µg(x) in an unconstrained fashion. In our case:

h(λ, µ) =

n∑
α=1

n∑
β=1

λαλβCαβ − 2

n∑
α=1

λαCα� + σ2 + µ

[
1−

n∑
α=1

λα

]

Taking the n+ 1 derivatives and setting them to zero leads to:{ ∑n
β=1 λβCαβ − µ/2 = Cα�, α = 1, . . . , n∑n
β=1 λβ = 1

Georges Matheron called this ordinary kriging (OK). In presence of non-
stationarity OK can outperform SK by not assigning any weight to the global
mean. OK also provides an opportunity for us to intervene in the smoothing
of kriging by limiting the search.

2.4.4 Exercise W2-4

The least squares formalism known as kriging in geostatistics is very impor-
tant for geostatistical modeling.

1. Derive the estimation variance in terms of the covariance. Explain
where the assumption of stationarity comes into the derivation.

2. Derive the simple kriging equations by taking the derivative of the es-
timation variance with respect to the weights. Explain why the kriging
weights do not depend on the data values and why this is important.

3. Consider the configuration below. The global mean is 1.3 thickness
units and the variance is 0.2 thickness units2. Calculate the sim-
ple kriging estimate and the simple kriging variance at the unsampled
location given that the isotropic standardized covariance function is
C(h) = exp(−3h/250). Show all steps clearly.
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Figure 2.16: Data configuration for kriging exercise Question 3.



Chapter 3

Kriging and Simulation

The link between kriging and simulation is through the multivariate Gaussian
distribution, but the history of geostatistics has made the gradual transition
between these topics. A lecture plan for the third week:

Four Days Five Days

• Constrained kriging
• Primal and dual kriging
• Measures of performance

• Constrained kriging
• Primal and dual kriging
• Measures of performance

• Kriging paradigms
• Local uncertainty
• MultiGaussian kriging

• Kriging paradigms
• Local uncertainty
• MultiGaussian kriging

• Monte Carlo simulation
• Simulating correlated variables
• Sequential Gaussian simulation

• Monte Carlo simulation
• Simulating correlated variables
• Sequential Gaussian simulation

• Implementation of SGS
• Checking local uncertainty
• Checking realizations

• Implementation of SGS
• Review and Demonstration

• Checking local uncertainty
• Checking realizations
• Review and Demonstration

69
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Figure 3.1: Strange example of using a gray scale image of the Mona Lisa as
an external drift variable in kriging.

3.1 Kriging II

3.1.1 Constrained Kriging

Ordinary and universal kriging where the mean is non-stationary [37, 43]:

m(u) =

L∑
l=0

alfl(u)

where the a coefficients are unknown and the fl terms are specified functionals
of location. By convention f0(u) = 1.

The path forward is to remove the mean from the estimator and enfoce un-
biasedness:

E

{
n∑
α=1

λαz(uα)

}
= E {z(u�)}

The OK framework from the previous chapter is extended:{ ∑n
β=1 λβCαβ +

∑L
l=0 µl = Cα�, α = 1, . . . , n∑n

β=1 λβfl(uβ) = fl(u�), l = 0, . . . , L

Kriging with external drift (KED) is where one or more of the functionals
come from an external data source such as geophysics. KED is quite widely
used and recommended. Most implementations of UK where the functionals
are monomials of the coordinates are not recommended. The results are very
sensitive to the search and can become unstable particularly in extrapolation
with a small search.

CCG paper 2006-119 documents and summarizes an interesting perspective
on kriging with constraints (OK, UK/KT or KED). The perspective is based
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Figure 3.2: Illustration of the instability in UK estimates depending on the
search radius chosen.

on an understanding from the early days of geostatistics, but not well doc-
umented. The perspective is that these constrained forms of kriging (OK,
UK/KT or KED) are exactly equivalent to (1) estimation of the trend mod-
eling parameters (the al terms above) by linear regression, then (2) simple
kriging considering the mean estimated in the first step. This is an interesting
perspective since it places all types of kriging as variants of simple kriging.

3.1.2 Primal and Dual Kriging

Kriging solves an optimization problem. The best weights are computed that
minimize the expected error variance. Most optimization problems can be
expressed in a primal form and a dual form. The development above is all in
the primal form. Expressing an optimization problem in a dual formalism is
revealing and potentially computationally advantageous.

Consider vectors of data, weights, right hand sides and the matrix for the left
hand side:

zT = [z1, z2, . . . , zn, 0, . . . , 0]

λT = [λ1, λ2, . . . , λn, µ0, . . . , µL]

kT = [C1�, C2�, . . . , Cn�, f0�, . . . , fL�]

K =

[
Cαβ
fαl
|fβl

0

]
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Kriging can be expressed given this fundamental matrix notation. The esti-
mator in the primal form:

z∗ = λT z

Kλ = k

λ = K−1k

λT = kTK−1

The estimator in the dual form:

z∗ = kTK−1z

= zTK−1k

= dT k

dT = zTK−1

d = K−1z

Kd = z

The dual form is computationally efficient since the weights do not depend
on the unsampled location. They are a function of the data values. Estimats
can be computed by recalculating the right hand side vector and a simple
vector multiplication. Moreover, the Lagrange multipliers mean something -
they are the drift terms (the al values). Unfortunately, in the dual form the
kriging weights have no easily interpretable meaning and the kriging variance
cannot be calculated.

3.1.3 Kriging Measures of Performance

The estimate from kriging always gets better with more data used, see [23]
and many other examples. Nevertheless, there are many kriging metrics of
kriging performance that are considered including:

1. Kriging variance (KV): σ2
K(u) is the ultimate measure of performance

- it is the measure minimized by the kriging equations. No other es-
timator will have lower KV. Figure 3.3 shows the typical case. SK is
better than OK for a relatively small number of data, then OK outper-
forms because the non-stationary mean is more reliable. Interestingly,
the error never increases.

2. Kriging efficiency (KE):

KE =
BV −KV

BV
=
D2(v,A)− σ2

K

D2(v,A)
= 1− σ2

K

D2(v,A)
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Figure 3.3: Typical example of the estimation variance versus the number of
data used. Error goes down with the number of data used.

This is like a local R2 measure. It is also perfectly inversely related to
KV and does not bring any new information - although it is dimension-
less.

3. Statistical efficiency (SE): GSKV (u)
σ2
K(u)

. Efficiency in statistical regression

is related to how low the error variance is relative to the lowest it could
be. The lowest possible is the global simple kriging variance.

4. Slope of regression (SR) will be developed more below, but it is less
than one in OK with a limited search. Ideally, the SR is one, but we
accept it being less to avoid excessive smoothing.

5. Negative weight measure (NW)

nwm(u) =
∑

all neg wts

|λα|
n
· 100

such that one weight of -0.1 in 10 would give a nwm of one. Negative
weights are not necessarily bad - they lead to local extrapolation in
the behaviour of the regionalized variable. Of course, large negative
weights and outliers certainly cause problems. In general, set negative
estimates to zero and move forward. If the number and magnitude of
the negative estimates are significant, then it is likely that the variogram
is inconsistent with the spatial distribution of the variable.

6. Weight to the mean (WM) - this is really only for SK. The more weight
to the mean, the less the data are important.

Slope of regression:

z = a+ bz∗ b = ρ
σZ
σ∗Z
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Figure 3.4: Two schematic examples of kriging with negative weights. The
example on the left shows an estimate at an unsampled location higher than
the surrounding data due to large positive weights to the close data and
negative weights to data that are screened. The example on the right shows
how the same weights could lead to negative estimates.

b =
Cov{z, z∗}
σzσz∗

σZ
σZ∗

=
Cov{Z,Z∗}

σ2
z∗

= E{ZZ∗} −m2/E{Z∗Z∗} −m2

=
E{
∑n
α=1 λαzαz} −m2

E{
∑n
α=1

∑n
β=1 λαλβzαzβ} −m2

=

∑n
α=1 Cα�∑n

α=1

∑n
β=1 λαλβCαβ

for all variants of kriging. For SK :

σ2
SK = σ2 −

n∑
α=1

λαCα� (3.1)

= σ2 − 2

n∑
α=1

λαCα� +

n∑
α=1

n∑
β=1

λαλβCαβ

b =
σ2 − σ2

SK

σ2
SK − σ2 + 2(σ2 − σ2

SK)
=
σ2 − σ2

SK

σ2 − σ2
SK

= 1

For OK with one data:

b =
C1�

σ2
≤ 1

this shows that the slope is less than one and significantly less than one when
the weight to the implicitly calculated local mean increases.

Metrics of performance should always be reviewed, but the results are un-
satisfying. Kriging larger blocks is always better according to the measures,
but are no different than smaller blocks in practice. The block size should be
chosen for practical engineering reasons, adapting to geological boundaries
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Figure 3.5: Illustration of how block estimates do not change significantly
with block size, but the estimation variance reduces significantly.

and for computational considerations. Using more data is always better, but
this depends on the purpose of the estimate.

3.1.4 Exercise W3-1

The least-squares formalism known as kriging in geostatistics is very im-
portant for geostatistical modeling. In this exercise you will apply different
kriging variants under cross validation and for kriging a grid. Data set to be
used for mining is the gold grade in Misima.dat.

1. Run cross validation for simple kriging using the declustered mean with
40 closest data using your variogram model. Plot a scatterplot between
the estimated and true values for each number of search data. Comment
on the scatterplot, the mean error, mean squared error, variance of the
estimates and correlation between the true values and estimates. Rerun
the cross validation with 4 data and compare.

2. Now run cross validation for ordinary kriging with 40 closest data using
your variogram model. Plot scatterplots and comment on your results
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as before. Comment on the differences in results between simple and
ordinary kriging. Rerun the cross validation with 4 data and compare.
Pay particular attention to the conditional bias with ordinary kriging.

3. Estimate on a grid with simple point kriging and ordinary point kriging
using 40 samples. Plot slices through the models, histograms of the
estimates and comment on the results.

4. Estimate on a grid with simple block kriging and ordinary block kriging
using 40 samples. Plot slices through the models, histograms of the
estimates and comment on the results.

3.2 Kriging and Local Uncertainty

3.2.1 Kriging Paradigms

The four paradigms of kriging are differentiated by the goal of estimation:

• Visualization or implicit modeling of geology using distance functions or
indicators: the goal for this type of estimate is an artifact free estimate
that is smooth and natural. A global search should be used if possible,
ordinary kriging is preferred and the dual formalism is also preferred
for computational efficiency.

• Final estimate when no (or very little) additional data is coming avail-
able to help the design or decision: the goals for this type of estimate is
to have the best resolution possible (down to 1/4 of the data spacing),
avoid any conditional bias and get the best estimate possible - minimum
MSE and minimum Type I/II errors. The smoothing of the estimate is
of no consequence. A reasonably large search, ordinary kriging, points
or small block estimation with 25 (2-D) to 50 (3-D) data.

• Interim estimate - long range resource estimates awaiting more data in
the future: the goal is to match what will be mined in the future and
to avoid excessive smoothing of the estimates. Conditional bias is of no
consequence to this type of estimate. Ordinary kriging is used with a
limited search. Volume variance relations are often used to predict the
variance or grade tonnage curve that would be encountered in the future
and to help choose a limited number of data for the kriging. The search
is set fairly large, but the number of data are calibrated for the SMU
v variance D2(v,A), that is, the variance of the estimates is matched
to the anticipated variance (or the grade tonnage curve at the chosen
cutoff. Figure 3.6 illustrates this. The estimate is not a good final
estimate, but the purpose is to match future production - not provide
the best local estimate.

• Probabilistic prediction for uncertainty calculations or simulation: the
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Figure 3.6: Illustration of histogram matching taken from Geostatistics
Lessons.

goal is accuracy and precision of the predicted probabilities, artifact
free estimation and consistency with the underlying random function.
For Gaussian variables, simple kriging (SK) should be used with a large
search and a large number of data: 25 (2-D) to 50 (3-D) data. For indi-
cators, OK is used with a consistent large search across all thresholds.

The key is the difference between a final estimate and an interim estimate
anticipating the information effect. Some more details on setting the kriging
plan can be found in the Lesson [20].

The block size is an important consideration in kriging. The natural size is
about 1/4 data spacing. Estimating blocks smaller than that does not improve
the delimitation of boundaries between high and low values. Larger blocks
make boundaries fuzzy and imprecise. Small blocks or even points should be
used for final estimates, then boundaries can be traced between zones of high
and low values that reflect the selectivity of the operation. Final selectivity
is better represented by boundaries than by large blocks. The concept of an
SMU is for long range interim resource estimation and not final estimation.

The number of data to use in kriging is another consideration. Interestingly,
according to all metrics of performance (MSE, R2, Type I/II errors,...) more
data is always better. The advice given above is for 25 (2-D) to 50 (3-D)
since the improvement past that number is negligible, yet the computer cost
keeps increasing. The close data receive almost all of the weight in kriging
and increasing the number beyond these values do not change the estimates
much. In fact, global kriging with all of the data, particularly in the dual
formalism, is a very useful approach to estimation.
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The search radius is often set to the variogram range. Unfortunately, the
variogram range is an ambiguous parameter since the variogram often ap-
proaches the sill in an asymptotic manner. The search range should be set
fairly large, then the number of data actually used in the kriging restricted
by the maximum per drill hole (2 to 3 - to avoid the string effect and sub-
optimal estimates), maximum per octant (4 to 8 - to avoid artifacts caused
by clustered data) and the absolute maximums of 25 to 50. The final esti-
mates can be clipped by a maximum data spacing, that is, a high resolution
data spacing model should be constructed and blocks that are in areas with
a too-large data spacing should be set to missing.

There is no theory for multiple pass searches. Some practitioners like the use
of multiple pass searches to avoid excessive smoothing, build in classification
criteria and avoid estimating too far. The preference of this author is to
make the best estimate possible for the paradigm under consideration, then
clip and classify according to a high resolution data spacing model.

3.2.2 Local Uncertainty

The principle behind kriging is to compute the best estimate, which seems
reasonable, but all estimates are associated with some error and the uncer-
tainty is not quantified. The modern approach is to quantify the uncertainty
at all unsampled locations and use that uncertainty for decision making and
simulation. Consider a stationary domain A and a set of data (n):

(n) : {z(uα) = zα, α = 1, . . . , n}
Kriging aims to calculate the best estimate at all unsampled locations:

{z∗(u�),∀u� ∈ A}
The minimized estimation variance or the kriging variance provides some in-
formation on local uncertainty; a location with high kriging variance is likely
more uncertain than one with low kriging variance. The kriging variance
does not depend on the data values, that is, it does not consider the propor-
tional effect and does not provide details of the shape of the distribution of
uncertainty.

The modern approach is to compute the local uncertainty at each unsampled
location: {

fZ(u�)|(n)(z),∀u� ∈ A
}

Recall the principles from Section 1.3.1 on Bayes’ Law. The definition of a
conditional probability can be applied to compute the conditional distribution
at an unsampled location:

fz(u�)|(n)(z) =
fZ�,Z1,...,Zn(z�, z1, . . . , zn)

fZ1,...,Zn(z1, . . . , zn)
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That is, a conditional distribution at an unsampled location is the n + 1-
variate multivariate distribution of the unsampled value with all of the data
divided by the n-variate multivariate distribution of the conditioning data.

The simplest possible way of visualizing this is to consider one data and one
unsampled location some distance apart. Scanning over data in a stationary
domain leads to pairs that inform the bivariate distribution and the marginal
distribution required to infer the conditional distribution.

The challenge is to infer the n+1 and n variate distributions as n approaches a
reasonable number like 25 or 50. The curse of dimensionality (a phrase coined
by Richard Bellman) summarizes how such high dimensional distributions
cannot be inferred from a finite number of data. The number of replicates
required would increase exponentially to infer a high dimensional distribution.
There is a need for a parametric distribution.

There are an infinite number of parametric distributions for univariate ran-
dom variables. Some of these are based on a probabilistic generating mech-
anism, but most are based on satisfying the requirements of a CDF (non-
decreasing between 0 and 1) or a PDF (non-negative and integrates to 1).
There are also an infinite number of parametric distributions for independent
variables. The multivariate distribution of n independent variables is simply
the product of the univariate distributions. In geostatistics, the n+1 locations
under consideration are related together spatially through the underlying ge-
ological processes that led to the present day distribution. The options close
in and there is only one parametric multivariate distribution that is math-
ematically tractible with arbitrarily correlated variables. The multivariate
Gaussian (MG) distribution is unique in mathematics and probability.

3.2.3 MultiGaussian Kriging

The multivariate Gaussian distribution is truly unique and widely exploited
in statistics and geostatistics. The setup of MG including back transform will
be presented. This was developed by Verly in the 80s [60]. The multivariate
Gaussian distribution has remarkable properties:

f (y;µ,Σ) =
1(√

2π
)d |Σ|1/2 e−(y−µ)TΣ−1(y−µ

2

The value y is a vector position in a d dimensional space. There are two
parameters: (1) µ - a d dimensioned vector of mean values in each coordi-
nate/dimension, and (2) Σ - a dxd dimensioned matrix of variance-covariance
values between each coordinate/dimension. As explained in Chapter 1, the
generating mechanism of this distribution is summarized by the central limit
theorem - the sum of many independent identically distributed variables tends
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to a Gaussian distribution. Regardless of whether our variables satisfy this
generating mechanism, we adopt this distribution because of its remarkable
properties.

The first of many remarkable properties is that all lower c < d distributions
are also Gaussian if the d-variate distribution is Gaussian. To the extreme,
the univariate distribution of each of the d variables must be Gaussian. All
bivariate distributions are bivariate Gaussian and so on. The shape of any
marginal or conditional distribution is Gaussian - all we need is the mean
vector and variance-covariance matrix to define it completely.

The second remarkable property is that all conditional mean values are linear
functions of the conditioning data. In many cases, a linear estimate is adopted
for simplicity, but in the case of the multivariate Gaussian distribution, a
linear combination of conditioning data is the conditional mean.

A third remarkable property of the multivariate Gaussian distribution is that
the conditional variance (of any conditional distribution) does not depend on
the conditioning data - the conditional variance only depends on the variance-
covariance structure between the conditioning data and the variable under
consideration.

These properties all lead to the final and most important remarkable property
of the multivariate Gaussian distribution. The conditional mean and variance
(covariance) values for a multivariate Gaussian distribution are given by the
normal equations that are known as simple kriging (SK) in geostatistics.

mc =

n∑
α=1

λαyα

σ2
c = σ2 −

n∑
α=1

λαCα,�

n∑
β=1

λβCαβ = Cα� α = 1, . . . , n

This is an endless source of confusion for classically trained geostatisticians.
The belief is that simulation and uncertainty evolved from kriging. That is
not true. The normal equations (referred to as SK above) are the analytical
solution arising from the MG distribution. If the random variable is multi-
variate Gaussian, then any conditional distribution is (1) Gaussian in shape,
(2) a mean value given by a linear combination of the conditioning data, and
(3) a conditional variance that depends on the variace-covariance structure
of the data. Conditional distributions are easily calculated if the multivariate
distribution is multivariate Gaussian.
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The premise of modern geostatistics is that two assumptions are required: (1)
a careful choice of stationarity - a geological population of data and unsam-
pled locations that belong together, and (2) a normal score transform of all
the variables in the stationary domain. Then, all locations within the station-
ary domain are assumed to be multivariate Gaussian. All local conditional
distributions are calculated by the normal equations. The local Gaussian
distributions must be back transformed.

The back transformation of a local distribution must be accomplished through
a quantile-quantile transformation via the global distribution. Most of us wish
for a transformation that would consider only the mean and variance, but the
entire shape of the local distribution must be informed. This involves defining
a set of probability values randomly or by a regular discretization (preferred
at this point). The L probability values are defined by:

pl =
l

L+ 1
, l = 1, . . . , L using L = 200

Then, considering the local Gaussian distribution, the original units distribu-
tion is defined by the back transformed quantiles:

zl = F−1
(
G
(
G−1(pl) · σc(u) +mc(u)

))
l = 1, . . . L ∀u

The back transformation is sketched in Figure 3.7 where two local conditional
distributions are back transformed. In Gaussian units, the red and the green
distributions have nearly the same variance, but the distributions in original
units are quite different due to the skewness of the original units distribution.
Given zl, l = 1, . . . L, any summary measure of uncertainty can be computed.
The mean, variance, probability to be within an interval of the mean, any
other probability values can be computed from these values. The local values
could be corrected by volume variance relations; however, the local change of
support is not the same everwhere as the global change of support.

There are three key ingredients for this approach to work. First, the sta-
tionary domain and data must be geologically coherent and belong together.
Second, the distribution F (z) that represents the stationary domain must be
truly representative of the stationary domain. Finally, the variogram model
of the normal scores that inform the covarnace model must also be represen-
tative of the stationary domain.

3.2.4 Exercise W3-2

The objective of this exercise is to become familiar with how kriging can be
used to quantify uncertainty without resorting to simulation. Concepts here
will be useful for understanding Gaussian simulation algorithms.



82 CHAPTER 3. KRIGING AND SIMULATION

Figure 3.7: Illustration of the back transformation of local conditional distri-
butions in Gaussian units to original units.
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Figure 3.8: Schematic illustration of a stope, SMU and pushback with some
discretization points.

Recall the data configuration used previously for kriging by hand (Figure ??).
For this exercises, consider that the thicknesses were found to fit an exponen-
tial distribution with a mean of 1 thickness unit. The cumulative distribution
function of the exponential distribution is given as:

F (x;λ) = 1− exp(−λx), when x > 0 and 0 otherwise

where λ is the inverse of the mean. We are interesting in the uncertainty in
thickness at the unsampled location shown.

1. Transform the thickness values to Gaussian units.
2. Calculate the conditional mean and conditional variance at the unknown

location in Gaussian units.
3. Back transform 99 evenly spaced percentiles (0.01, 0.02, . . . , 0.99) to es-

tablish the local conditional distribution at the unsampled location in
units of thickness. Plot the distribution and comment on the shape.

4. Using these back-transformed values, calculate the mean thickness and
a 90% probability interval for the thickness at the unsampled location.

3.3 Simulation I

3.3.1 Monte Carlo Simulation

Local uncertainty is useful for drill hole planning and placement, but we are
often interested in the uncertainty that involves multiple values/locations at
the same time. We are often interested in uncertainty in a value that de-
pends on many locations at the same time: a stope, an SMU, a push back,
the production for a month (quarter or year), the entire life of mine (LOM)
resources, see Figure 3.8 for a sketch. A challenge is to convert local uncer-
tainty to uncertainty in many locations at the same time. Many locations
implies thousands to millions.
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Figure 3.9: Illustration of the principle of simulation. The truth is variable
at all scales and sampled at relatively few locations. Kriging leads to a too-
smooth distribution. Simulation leads to multiple realizations that capture
the heterogeneity and the uncertainty.
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Figure 3.10: Illustration of the principle of MCS. Known uncertainty in input
variables is transfered to response or output variables.

Figure 3.11: Schematic illustration of cable length required by kriging and
simulation. The message is that variability may lead to results skewed in one
direction. A smooth representation may be biased in another direction.

Monte Carlo simulation is the novel and unassailable technique to solve this
problem. A classic reference with historical perspective is [31]. On reflection,
there is no other approach to transfer uncertainty from a point scale to larger
scale. Think about the curse of dimensionality.

Consider n input variables that are arbitrarily correlated and a response that
is some function of all n at the same time. There is uncertainty in each of the
n variables that must be transferred through to the response. see Figure 3.10.
An evident approach is to discretize all n input variables by some number (10
to 100) and compute the response for the combinatorial of input variables.
The problem is that that the number is nearly infinite. A full combinatorial
of all options is not possible.

Sampling in a systematic manner would not be reasonable. Sampling all low
values for every variable or all high values for every variable would lead to
highly improbable results. Sampling the median of all variables is unlikely
to be the median of the response. The variability matters and the variability
may lead to a systematic change in the results. Examples based on cable
length (see Figure 3.11) and flow simulation will be discussed.

The concept of Monte Carlo Simulation (MCS) is to sample a reasonable
number of realizations in a fair manner. The key idea emerged from the re-
searchers on the Manhattan Project. There was an effort to directly draw
from arbitrary distributions, but that quickly gave way to a two step proce-
dure: (1) draw a random number uniform between 0 and 1, p, then (2) choose
that quantile from the distribution being sampled: zp = F−1(p). Over many
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Figure 3.12: Consider three dice as the input variables and the sum shown
on the top faces as the response variable. MCS could be used for this. One
outcome with three random numbers (r1, r2, r3) is shown on the left and 100
response values is shown on the left.

realizations the simulated values would exactly reproduce the distribution
being sampled.

The three dice example is one I have used many times. Consider three dice
thrown at random (the input variables) and the sum of the three dice (the
response variable). In this simple example there are only 216 possible out-
comes (6x6x6), but we could still apply MCS to understand the outcome, see
Figure 3.12.

Transfering uncertainty in variables that are independent is very straightfor-
ward. Sample each input variable, calculate the response, and repeat many
times. The distribution of the response can be constructed to an arbitrary
precision. The challenge is when the variables are correlated.

3.3.2 Simulating Correlated Variables

The concept of MCS is well suited to independent variables. Simulating
many dependent variables is essential in geostatistics. There may be a variety
of mathematically clever solutions, but for understanding purposes, there is
nothing that comes close to sequential simulation.

Consider MCS from a bivariate distribution of two correlated variables. The
Z1 value and the Z2 value cannot be drawn independently - any direct or
inverse relationship would not be respected. If the same random number is
used for both the Z1 and Z2 value, then the relationship would be a perfect
direct relationship and the scatter would not be respected. As above, recall
the principles from Section 1.3.1 on Bayes’ Law. The definition of a condi-
tional probability can be applied to compute the conditional distribution at
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an unsampled location:

fZ2|Z1
(z) =

fZ1,Z2
(z1, z2)

fZ1
(z1)

leading to:
fZ1,Z2(z1, z2) = fZ2|Z1

(z) · fZ1(z1)

The path forward is clear. Regardless of the structure between Z1 and Z2,
the bivariate distribution can be decomposed into a sequence of two univari-
ate distributions (recall Figure 1.19 for an example): (1) draw z1 from the
marginal distribution of Z1, then (2) draw z2 from the conditional distribution
of Z2|Z1 = z1. Any bivariate distribution would be preserved by this proce-
dure. The order of the variables does not matter - z2 could be drawn first,
then z1. The key point is that after drawing one variable it must condition
the next.

This concept can be generalized to any number of variables. Consider N
variables:

P (A1, . . . , AN ) = P (AN |A1, . . . , AN−1)

P (A1, . . . , AN−1)

= P (AN |A1, . . . , AN−1)

P (AN−1|A1, . . . , AN−2)

P (A1, . . . , AN−2)

...

In practice, the n data are considered as samples already drawn from the
multivariate distribution. Simulation starts at n+1 and proceeds to N . Also,
in practice, as the number of conditioning data increases the number that are
actually considered must be limited. A Markov screening like assumption
is considered where the nearby values that would influence the conditional
distribution are used (the 25 to 50 data mentioned previously). In practice,
the derivation of a conditional distribution using 25 to 50 data remains a
challenge.

3.3.3 Sequential Gaussian Simulation (SGS)

SGS may not stand the test of time as the most efficient implementation, but
for understanding and for flexibility - it is unparalleled. A review of SGS is
presented.

Consider the sequential simulation paradigm presented in the previous sec-
tion. Consider also that the regionalized variable under consideration has
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been transformed to normal scores, assumed multivariate Gaussian, and fully
parameterized by a stationary assumption for the mean and a normal scores
variogram model that informs the covariance structure. Then, the same
methodology as used for MG kriging could be used to derive the conditional
distribution at each step in the sequential simulation approach. Consider the
following steps:

1. Establish a representative distribution FZ(z) using the best declustering
and debiasing availble. The data are normal score transformed using
this distribution. The mean is assumed stationary here - a trend model
could intervene in the transformation, but that will be seen in the next
chapter.

2. Calculate, interpret and model a variogram of the normal score trans-
formed data. This provides the variance/covariance values needed for
the multivariate Gaussian distribution.

3. Define a sequence or path through all of the locations to be simulated.
This could be any path, but a random path is often considered to avoid
any artifacts in the simulated realization.
(a) Calculate the conditional distribution at the current location con-

sidering all original data and previously simulated values - limit
our consideration to the nearest 25-50 values. This amounts to
applying SK to the nearby data.

(b) Draw a random value from the conditional distribution. Draw a
random Gaussian deviate and consider the conditional mean and
variance from the previous step.

(c) Add the simulated value to the set of data and continue to the
next location.

4. Repeat the step above as many times as required for a reasonable num-
ber of realizations (200?).

5. Back transform all normal score values to original units.

This procedure is well established and known as Sequential Gaussian Simu-
lation (SGS). There are alternatives based on unconditional simulation and
conditioning by kriging, but they amount to the exact same result - real-
izations from a multivariate Gaussian distribution. There are computational
considerations, but theoretically the results are the same. SGS is easy to
understand.

3.3.4 Exercise W3-3

Simulation is the only method for the joint quantification of uncertainty be-
tween multiple variables at multiple locations. This exercise will use the same
data sets used for the kriging exercise. Consider Au in the Misima data.
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1. Using the declustered distribution, normal score transform variable to
Gaussian units. Calculate and model directional variograms for the
normal score transformed variable. Use the directions and models from
the kriging assignment as a starting point and modify as appropriate.

2. Run point simple kriging of the normal score variable with a mean of
zero, a search up to the variogram range and up to 40 data. Plot some
slices of the simple kriging estimates and the simple kriging variance.

3. Use sequential Gaussian simulation to simulate 200 realizations of the
normal score variable. Do not have the simulation program transform
the data; use your normal score transformed values. Plot slices through
the first two realizations and comment on the results. Average all 200
realizations on a block-by-block basis to calculate the e-type estimate
and variance. Plot maps of the e-type mean and variance and compare
with the point simple kriging results from Question 2.

4. Use sequential Gaussian simulation to simulate 200 realizations letting
the program transform and back transform. Average all realizations on
a block-by-block basis to calculate the e-type mean and variance. Plot
slices through the first two realizations, e-type mean and variance in
original units.

3.4 Simulation II

3.4.1 Implementation of SGS

All Gaussian simulation algorithms have the same prerequisites. Any large
scale trend must be modeled and the variable detrended before proceeding
with simulation. The data must be correctly positioned and outliers must be
managed. Simulation is more robust with respect to outliers than kriging,
but the tails of the distribution are reproduced by simulation and outliers
must be managed carefully.

Another consideration is that simulation assigns values at the scale of the
data. The values are averaged to blocks after simulation. There should be 9
values or so (see Lesson on discretization) per block for reliable block values.
The number of discretization points may need to be greater if the property
being simulated is non-linear and a physics based upscaling is being applied.

All Gaussian simulation algorithms require the data to be transformed to a
standard normal distribution. The reference distribution for transformation
must be truly representative of the domain under consideration. Declustering
and debiasing are applied, see Chapter 1.

The number of data used to condition the local distributions as simulation
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proceeds must be sufficient. The 25 in 2-D and 50 in 3-D rules expressed above
should be considered. The default in legacy SGS codes (like the GSLIB sgsim
program) may be set low for testing/speed. The number of data should not
be compromised.

The sequence of visiting the grid nodes for simulation is random to avoid
any artifacts. Not completely random - a multiple grid search is a good idea.
Simulating a coarse grid, then an intermediate grid, then the final grid helps
to enforce long range variogram structure - especially zonal anisotropy. The
order within each grid is random.

Sequential Gaussian Simulation (SGS) works well if sufficient data are used
in the path. Some published examples showing SGS does not work consider
implementation choices that are poor: no surprise that a technique does not
work well if incorrectly applied. Although SGS can work well, an alternative
to Gaussian simulation is to (1) generate unconditional realizations, then (2)
condition by kriging. Unconditional simulation can be very fast with turning
bands, spectral techniques and perhaps moving average (convolution) tech-
niques depending on the variogram. Then, conditioning by kriging can be fast
if global dual kriging can be applied. The results of this two-step procedure
may be more computationally efficient than SGS, but the multivariate dis-
tribution being sampled is the same if parameterized the same. Figure 3.13
shows a small 1-D example of this workflow (see the Lesson [30] for more
details).

3.4.2 Checking Local Uncertainty

Local estimation is straightforward - we look to minimize the mean squared
error (MSE) and maximize the coefficient of determination (R2) with an unbi-
ased estimator. In the context of simulation or the prediction of uncertainty,
the local expected value should be checked against the true values in a clas-
sical estimation cross validation mode. There may be systematic biases that
are masked by the variability/uncertainty that are caught by checking the
expected value.

In the case of uncertainty, accuracy and precision are important. [15] and have
to be checked in addition to the expected value. Accuracy is the correctness
of the probabilities, that is, do the proportions meet the predicted meaning.
Consider some probability intervals, e.g., pi = 0.1, 0.2, . . . , 0.9, then:

plowi =
1− pi

2
phighi =

1 + pi
2

p̂i =
Number in (plowi , phighi ]

Total Number
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Figure 3.13: Illustration coming from Geostatistics Lessons [30] for condition-
ing by kriging.
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Figure 3.14: Illustration of an accuracy plot. The experimental points should
fall on the 1:1 45 degree line. Points above the line are accurate, but needlessly
high variance. Points below the line are inaccurate.

The probabilities are accurate if p̂i ≥ pi∀i. Categorical variables are checked
by the probability ± a tolerance.

This general approach to check accuracy applies to continuous or categorical
variables and parametric or non-parametric distributions. In the context of
Gaussian distributions the checking is more straightforward since the local
distributions are fully defined by a conditional mean and conditional vari-
ance. There is no need to simulate to assess the local uncertainty. Recall
that simulation is to transfer local uncertainty to multilocation or multivari-
ate uncertainty - the local uncertainty is defined analytically in a multivariate
Gaussian context. The accplt ns program is designed especially for normal
scores (Gaussian) values. A schematic of an accuracy plot is shown on Fig-
ure 3.14. Note that experimental points should fall on (or above) the 1:1 line
for accuracy.

Accuracy is the number one consideration in checking uncertainty. If dis-
tributions of uncertainty are not accurate, then they are not useful. Once
accuracy is achieved we turn our attention to precision. Precision is the nar-
rowness of the uncertainty. Everything being equal we would prefer more
precise distributions. Considering the global distribution at each location
would be accurate, but not precise. Considering a single estimate at each
location would be precise (no variability at all), but not accurate. As men-
tioned, we must ensure accuracy and then seek the most precise distributions
possible.
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Measures of precision for continuous and categorical variables:

Pcont =
1
n

∑n
i=1 σ

2
c,i

σ2

Pcat =
1
n

∑n
i=1Hc,i

Hmax

The checking software or a custom piece of code should be used to calculate
the precision. If the entire workflow is designed correctly, then the practitioner
will be naturally led to accurate distributions that are as precise as possible.
It should not be possible to randomly perturb the parameters of uncertainty
calculation and get to better results.

As more data is acquired, predictions of uncertainty should stay accurate
and become more precise. At times, uncertainty increases with more data
due to a change in the conceptual geological model. This should not happen
often. Parameter uncertainty early on should be large enough to capture this
uncertainty.

3.4.3 Checking Simulated Realizations

Checking and validating the results of numerical modeling should be consid-
ered to the greatest extent possible. There are minimum acceptance criteria
that have been documented. Consider the Lesson [19] and other tradecraft
details.

The results of simulation must always be checked carefully - regardless of how
well the practitioner understands the theory and software for simulation. Real
geology is complex and unlikely to exactly follow our implicit assumptions.
A checklist:

• Data reproduction - all data should be reproduced at their locations.
Some differences are expected when the simulated locations do not coin-
cide with the data locations or there are dense conditioning data relative
to the spacing of the simulated nodes.

• No visual artifacts - although visual inspection is not definitive, care-
ful visual inspection of the realizations can reveal numerical artifacts,
edge effects, high grades in known low grade areas (and vice versa),
unrealistic continuity or randomness and other issues. The pattern of
variability away from the drill holes should look like at the drill holes.

• Cross validation in estimation and uncertainty mode - as described in
the previous section should be considered. The expected values should
be unbiased and the uncertainty should be accurate and precise.

• Statistics reproduction (F, γ, ρ, . . .) - the histogram, variogram and other
statistical parameters such as the correlation coefficient to secondary
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Figure 3.15: Illustration of statistics reproduction for the histogram and var-
iogram. These results show excellent reproduction.

data other simulated variables should be reasonably reproduced. The
reference declustered distribution is important. The variograms of the
simulated realizations should be closer to the experimental points than
the fitted model. An example of statistical reproduction is shown in
Figure 3.15. In presence of parameter uncertainty, check against base
case.

• Swath plots - considering the average properties in principal directions
are used to check reproduction of trends and the data. The ”swaths”
are perpendicular to the direction vector with tolerance. The average
of the data in each swath is compared to the realizations. Figure 3.16
shows an example.

• Average of many realizations equal to kriging - simulation after all does
not bring new information to the spatial distribution. Realizations re-
flect reasonable variability and quantify uncertainty, but kriging pro-
vides a solid estimate of the expected value. The correlation between
the average of many realizations and kriging should exceed 0.97.

• Reconciliation with production data - this is always the gold standard.
Researchers at a university are developing algorithms and are not work-
ing at a mine. Unsurprisingly, they do not ”talk to their metallurgists”
since there are none. At a real operation, however, it is essential that
the resource model be reconciled with short term models and with pro-
duction from the mill.

Correct to kriging if required:

ẑ(u; l) = z(u; l) · zOK(u)
1
L

∑
z(u; l)

This correction is particularly useful if a trend model is not being considered
and a good ordinary kriged model captures the trend.

Correct the histogram (perhaps iteratively):

z1(u; l) = F−1rep (FL(z(u; l)))
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Figure 3.16: Illustration of a swath plot. These results are somewhat con-
cerning. the realizations are too high to the left and too low in the middle.
Trend modeling may be in order.

z2(u; l) = z(u; l) + (z1(u; l)− z(u; l))
σ2
K(u)

σ2
Kmax

This was considered more in the past. Correcting the values to the kriged
model is preferred in modern applications.

3.4.4 Exercise W3-4

This exercise will be used to investigate some model checks for kriging and
simulation and post-processing to enforce statistic reproduction in simulated
models. Consider the gold grade in the Misima data.

1. Perform simple kriging cross validation of the normal score transformed
variable in Gaussian units. Create an accuracy plot and comment.

2. Using the back-transformed realizations of the variable of interest simu-
lated in the previous exercise, check histogram reproduction of 10 real-
izations. The mean, variance and shape of the simulated distributions
should be compared with the declustered distribution.

3. Now using at least 10 of the normal score (not back-transformed) real-
izations, check the variogram reproduction along your principal direc-
tions and compare with the input normal score variogram.

4. On account of departures from stationarity, it is often convenient to
correct the realizations to reproduce a good OK model (using 40 data
or so). Perform this correction and comment on the results.
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Chapter 4

Multivariate and
Categorical

The Chapter covers Multivariate, Categorical and Post Processing. A lecture
plan for the fourth week:

Four Days Five Days

• Linear model of coregionalization
• Cokriging
• Collocated cokriging

• Linear model of coregionalization
• Cokriging
• Collocated cokriging

• Overview of multivariate
• Decorrelation
• Trend modeling

• Overview of multivariate
• Decorrelation
• Imputation

• Overview of categorical
• Indicators
• MPS and HTPG

• Review of multivariate
• Trends
• Review and geometallurgy

• MIK and UC
• Post processing
• Classification and localization

• Overview of categorical
• Indicators
• MPS and HTPG

• MIK and UC
• Post processing
• Classification and localization

97
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4.1 Cokriging

4.1.1 Linear Model of Coregionalized Variables

This is particularly relevant for completely unequally samples variables such
as data from different drilling or sampling that are never measured at the same
location, see Figure 4.1 for a sketch. This would be the case with exploration
and production samples or different drilling techniques. Cross variograms and
covariances are explained, interpretation summarized and modeling with the
LMC explained.

Consider K variables {Zk(u),u ∈ A} within a reasonable stationary domain
A. There are K direct variograms and K2−K cross variograms that measure
the spatial relationship between all pairs of variables, see sketch on Figure 4.2.
The generalized expression for direct and cross variograms is given by:

2γk,k′(h) = E {[Zk(u)− Zk(u + h)] [Zk′(u)− Zk′(u + h)]}

The generalized expression for direct and cross covariances is given by:

Ck,k′(h) = E {Zk(u)Zk′(u + h)} −mkmk′

In presence of unequally sampled data, the cross covariance must be calcu-
lated instead of the cross variogram (recall Figure 4.1). Note that the cross
variogram requires both variables at both locations. For this reason, the cross
covariance is almost always required when multiple data types are used in cok-
riging. The cross covariance could be fitted directly or it could be flipped over
with an interpolated cross covariance of collocated values Ck,k′(0).

The calculation principles for cross variograms and cross covariances are very
similar to direct variograms as explained in Chapter 2. The choice of lag
spacing must consider the spacing of both data types and the possibility
of pairing different measurements. The cross covariance in the forward and
backward direction are not the same and may need to be calculated and
combined outside the software. For example, Ck,k′(h = 20m45o) is not the
same as Ck,k′(h = 20m225o) although it is the same as Ck′,k(h = 20m225o).
The difference is sometimes called the lag effect. Most software assumes
Ck,k′(h) = Ck′,k(h) so the experimental covariances may have to be combined
before interpretation and fitting.

Regarding interpretation, the sill of the cross variogram is the cross covariance
of collocated values Ck,k′(0):

γk,k′(h) = Ck,k′(0)− Ck,k′(h)
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Figure 4.1: Schematic illustration of two data types that are not sampled at
the same location, e.g., production and exploration sampling.

Figure 4.2: Schematic illustration of the direct and cross relationships be-
tween all pairs of variables.
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Figure 4.3: Schematic illustration of cross variograms between positively cor-
related variables (left) and negatively correlated variables (right).

The sill of a cross variogram could be positive or negative - depending on
whether the two variables have a direct or inverse relationship, see Figure 4.3
for an illustration of both cases. A cross variogram going below zero may be
unexpected.

All direct and cross variograms must be modeled simultaneously to ensure
that they are jointly positive definite. The linear model of coregionalization
(LMC) is widely used for this purpose:

Zk(u) = mk +

nst∑
i=0

ak,iYi(u) k = 1, . . . ,K

Yis are independent standard factors with i = 0 corresponding to no spatial
structure.

V ar{Zk(u)} =

nst∑
i=0

a2k,i

CZk,Zk′ (0) =

nst∑
i=0

ak,iak′,i

Given this linear model, the resulting form of the direct and cross variograms
is given by:

2γk,k′(h) =

nst∑
i=0

ak,iak′,iγi(h)
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The a values are often combined into c values in the writing of the LMC:

2γk,k′(h) =

nst∑
i=0

ck,k′,iγi(h)

The challenge is to choose a flexible and reasonable pool of nested structures,
then set the parameters to fit the experimental points (and all of the known
sill values). There are a variety of iterative algorithms that automate this
procedure. Relatively recent modeling efforts consider the very large LMC
with 10 or more structures. Specialized software would be required.

4.1.2 Cokriging

As mentioned, the LMC and cokriging is relevant for completely unequally
samples variables such as different drilling or sampling (recall Figure 4.1). The
data should be considered as data events that have a location, a measured
value, a variable or data type identifier, and (optionally) a different volume
support and error content. Consider n data indexed as α = 1, . . . , n that
all could be of different type and, perhaps, all of different type than the
variable/data being estimated. The cokriging estimator at an unsampled
location is written:

z∗� −m� =

n∑
α=1

λα [zα −mα]

Much information is implicit in this notation. The unsampled location � has
a particular volume support and a particular variable or, perhaps, the best
data type for a variable is being estimated. Each data has the attributes
mentioned in the paragraph above.

Minimizing the error variance, just like kriging, leads to equations just like
kriging. With no constraints, we would have simple cokriging:

n∑
β=1

λβCαβ = Cα� α = 1, . . . , n

This looks exactly like the simple kriging in Chapter 2. The difference is that
the covariance values between different data events and the covariance values
between each data event and the location/variable being estimated come from
the appropriate direct or cross variogram / covariance model from the LMC.
Simple cokriging is a technique that works well. Many practitioners prefer
ordinary kriging.

A traditional form of ordinary cokriging involved setting multiple constraints:
(1) the sum of weights to the primary variable of the same type as being
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estimated is constrained to sum to one, and (2) the sum of weights to other
variables or data types is constrained to sum to zero. This is a terrible
idea. The secondary data cannot be given any influence - any positive weight
would have to be compensated for by a negative weight. This led some
early practitioners in geostatistics to conclude that cokriging is not useful:
an incorrect conclusion.

An alternative is to consider standardized ordinary cokriging where the esti-
mator is written with standardized variables:

z∗� −m�

σ�
=

n∑
α=1

λα
[zα −mα]

σα

Then, the sum of all the weights is constrained to be one. This is a hybrid
between simple and ordinary kriging. It seems to work well.

A common question is what correlation between variables is required to make
cokriging a useful and worthwhile endeavour? A correlation less than 0.25 is
almost always insignificant. A correlcation above 0.9 may mean the variables
are almost the same. The greater the number of secondary variables / data,
the lower our standards for the correlation. Given an exhaustive grid of
secondary data coming from geophysics, a corelation of 0.4 would be very
significant and important. The special case of an exhaustive grid of secondary
data for predicting a primary is often handled with collocated cokriging.

Another concern to address is the volume support difference between different
data. Some claim that all data must be at the same support. This is not
true. If data are at different support, then the experimental direct and cross
variograms are multi-support, that is between different supports. That is fine
since they are the correct multi-support measures needed in cokriging.

4.1.3 Collocated Cokriging

There are two important situations when there are exhaustive grids of sec-
ondary data for the prediction of a primary variable: (1) exhaustive secondary
variable from data collection such as geophysics/seismic, and (2) when vari-
ables are being modeled in a sequential fashion, that is, model Z1, then
Z2|Z1, then Z3|Z2, Z1 and so on. In presence of exhaustive secondary data,
the collocated data are surely the most important. There are many historical
references on this including [1, 39, 54, 2]. The more recent Lesson is helpful
summary of the variants [53].

In the original version of collocated cokriging two main assumptions are con-
sidered. First, only the collocated secondary variable is used - although there
is an exhaustive grid of secondary data, the collocated is surely the most
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important. Second, the required cross variogram model is assumed to by the
same shape as the primary variable variogram, that is, we assume an intrinsic
model between the primary Z variable and the secondary Y variable. If both
variables are standard this is written:

γY Z(h) = ρY Z(0) · γZ(h)

the direct primary variogram is scaled so that the cross variogram has correct
sill. This is remarkably simple in implementation - no LMC is required. The
primary variable variogram and the correlation to the secondary data are
required.

This original form of collocated cokriging (sometimes referred to as Markov
Model I) has some problems. The calculated variance is often too high. In
a sequential Gaussian framework this increased variance compounds and the
final histogram is not reproduced. Another problem is that the shape of the
cross variogram may be more similar to the secondary variable variogram.
The variogram of the secondary variable is often well informed because it is
on an exhaustive grid.

The so-called Markov Model II was devised to allow the cross variogram to
be more similar in shape to the secondary variable. Recall the Markov Model
I:

ρPS(h) = ρPS(0)ρP (h)

ρS(h) = ρP (h)

The Markov Model II takes the following form where there is a residual var-
iogram/correlogram ρR(h) to allow fitting the primary variable variogram
that is often less well informed than the secondary variable variogram.

ρPS(h) = ρPS(0)ρS(h)

ρP (h) = ρ2PS(0)ρS(h) +
(
1− ρ2PS(0)

)
ρR(h)

The Markov Model II can work well when the secondary variable dominates.
This model does not fix the variance inflaction.

A modification to fix the variance inflation is to extend the number of sec-
ondary data used to all of the primary locations as well, see Figure 4.4. This
provides a consistent mathematical model and a variance that is not inflated.
This leads to improved results in sequential simulation. The kriged values
are not much different.

Another important practical aspect of collocated cokriging is to consider the
case of one primary variable and many secondary variables. The secondary
variables could come from direct measurements or from previously simulated
variables. Most software is setup to krige or simulate one primary variable
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Figure 4.4: Schematic illustration of the setup for collocated cokriging and
intrinsic collocated cokriging.

with one secondary variable. The use of a super secondary variable is very
useful and practical to combine all secondary variables into one and to facil-
itate the use of commercial software. See the Lesson on the subject [63].

Consider a primary variable denoted Y and multiple secondary variables de-
noted Xj , j = 1, . . . , ns. The idea is to combine all ns secondary variables at
an unsampled location into a single super secondary variable denotes XSS .
This is done by a type of cokriging:

XSS =

∑ns
j=1 λjXj

σSS

The equations to calculate the weights are exactly cokriging equations. The
correlations between all secondary variables and between the primary and sec-
ondary variables are required (the primary variable, of course, is not required
- just the correlation structure):

ns∑
j=1

λjρi,j = ρi,Y , i = 1, . . . , ns

σ2
cond = 1−

ns∑
j=1

λjρj,Y

If the secondary data have been normal score transformed, then the shape of
the super secondary variable distribution is likely Gaussian. The variance of
the super secondary variable, however, is not one. It can be calculated as:

σ2
SS = 1− σ2

cond =

ns∑
j=1

λjρj,Y

This is used to standardize the super secondary variable. Also, the correlation
between the primary variable and the super secondary variable is always



4.1. COKRIGING 105

positive and greater than the correlation to any single secondary variable. It
is calculated as:

ρSS,Y = E{XSSY } =

∑ns
j=1 λjρj,Y

σSS
=
σ2
SS

σSS
= σSS

This greatly facilitates the use of ICCK in modeling secondary variables.
Other important related techniques are Bayesian Updating and Error Ellipses
that will be covered in lectures if time permits. The Lessons on Bayesian
Updating [64] and Error Ellipses [27] could be reviewed for combining distri-
butions of uncertainty.

Permanence of ratios is an interesting solution to the ”ABC” problem dis-
cussed in Chapter 1, see [40] and [49]. The idea is to consider a probability
distance:

r =
P (A)

P (A)
=

1− P (A)

P (A)
∈ [0,∞)

r12 =
1− P (A|D1, D2)

P (A|D1, D2)

r1 =
1− P (A|D1)

P (A|D1)
r2 =

1− P (A|D2)

P (A|D2)

Assume that the contribution of D2 to A with knowledge of D1 is the same
as not knowing D1. D1 and D2 could be interchanged:

r12
r1

=
r2
r

r12
r2

=
r1
r

r12 =
1− P (A|D1, D2)

P (A|D1, D2)
=
r1r2
r

P (A|D1, D2)
(r1r2

r
+ 1
)

= 1

P (A|D1, D2) =
1

1 + r1r2
r

=
r

r + r1r2

=

1−P (A)
P (A)

1−P (A)
P (A) + 1−P (A|D1)

P (A|D1)
1−P (A|D2)
P (A|D2)

P (A|D1, . . . , Dn) =

(
1−P (A)
P (A)

)n−1
1−P (A)
P (A) +

∏n
i=1

1−P (A|Di)
P (A|Di)

This approach is useful when a full multivariate distribution is not available
or easily estimated.
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4.1.4 Exercise W4-1

This exercise will introduce some more advanced multivariate simulation tech-
niques. Consider skarn2d.dat with gold and copper as a secondary variable.

1. Normal score transform gold and copper, calculate and model a reason-
able normal score variogram.

2. Using appropriate declustering weights, normal score transform both
copper and gold. Make a cross plot of the normal score transformed vari-
ables and comment on the correlation and relationship between these
variables.

3. Use sequential Gaussian simulation to simulate 100 realizations of gold.
Have the simulation program perform the transformation using the
declustering weights. Carefully choose the distribution tails for the
back transformation based on the variable histograms. Average all 100
realizations on a block-by-block basis to calculate the e-type mean and
variance. Plot maps of the first two realizations, e-type mean and vari-
ance in original units.

4. Simulate 100 realizations of copper conditional to the gold realizations.
Average all 100 realizations on a block-by-block basis to calculate the
e-type mean and variance. Plot maps of the first two realizations (plot
them next to the first two gold realizations), e-type mean and variance
in original units.

4.2 Multivariate

4.2.1 Overview of Multivariate Techniques

The theory and practice of multivariate geostatistics is dispersed in papers,
presentations, books and courses including [62]. Barnett’s guidebook is a
good source. The book by Rossi and Deutsch is descriptive and contains
some interesting case studies. The multivariate statistics book of Johnson
and Wichern is a good theoretical reference. One important way for practi-
tioners to understand multivariate geostatistics is through the workflows to
accomplish certain tasks. The workflows on Figure 4.5 are considered impor-
tant in modern mining multivariate geostatistics.

The first six workflows are related to data preparation, exploration and mod-
eling. The final six workflows are more related to spatial modeling.

Workflow 1.a: Transform Compositional Data. Many of the data con-
sidered in multivariate geostatistics are compositional, that is, they are non-
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Figure 4.5: Hierarchy of workflows for multivariate geostatistics. Although
incomplete, this provides some structure to become acquainted with the sub-
ject.

negative and sum to unity. A filler variable may be required if all constituents
are not measured. Considering the variables in standard workflows without
special treatment will not enforce the summation constraint. The use of a
ratio or logratio transformation enforces the constraint.

Workflow 1.b: Transform to Normal Scores. Virtually all multivari-
ate techniques require the data to be standardized and, ideally, univariate
standard normal. The normal score transform is commonly applied to each
variable one at a time. The original data should be despiked, that is, ties or
constant values caused by detection limit or significant digits should be bro-
ken. A representative distribution is required. Declustering and/or debiasing
is applied as required. Unequal sampling may require different declustering,
but a unique set of declustering weights is appropriate for equally sampled
data. An upper and lower tail specification is important for the back transfor-
mation. Fitting the distribution with polynomials or with kernel smoothing
may be useful. Sometimes spikes should be preserved and not despiked - this
makes distance-based multivariate techniques more accurate.

Workflow 1.c: Summarize Multivariate Relationships. The main goal
is to understand multiple variables for decisions of stationarity, ensuring qual-
ity control, workflow selection and so on. Understanding multivariate data is
challenging because we cannot visualize the data in high dimensions. Cross
plots of the data are interesting, but only show two axes at the same time.
Alternative attributes such as color, size and symbol shape could be used, but
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those representations are not mutually perpendicular to the other dimensions.
Cross plots of normal scores could be created by the scatnscores program that
includes a test of bivariate Gaussianity.

A correlation matrix of all secondary and primary variables is a nice display.
Some optimal ordering of the variables could be considered (see Maryam
Hadavand’s work). Understanding a large correlation matrix is not easy. A
useful supplement is to plot the variables with their MDS coordinates to more
easily see the ones that are close, far and clustered. Multidimensional Scaling
(MDS) embeds entities in a series of lower dimensional spaces to preserve the
pairwise distances as accurately as possible. The first requirement is pairwise
distances:

di,j =

√√√√ K∑
k=1

(xk,i − xk,j)2 or di,j = 1− ρi,j

first dimension is best 1-D, second is best 2-D and so on. This is another
good way to summarize multivariate relationships. See the Lesson on MDS
[44].

Workflow I.d: Aggregate Data Variables. There are two main reasons
to aggregate or combine variables. One reason is to facilitate techniques that
consider a single or a few secondary data such as intrinsic colocated cok-
riging. Multiple variables are combined into a super secondary variable and
the information from all is passed to subsequent calculations (see above). A
second reason to aggregate variables is to reduce the number used in fitting
a response surface. Some response surface fitting techniques are prone to
overfitting, yet we do not want to remove variables from the analysis. Aggre-
gating closely related variables aims to preserve the information from them
while reducing some noise due to averaging. As described above, a linear
aggregation scheme with cokriging is commonly applied. This would be done
with the normal scores. A hierarchical modeling workflow would require a
different data aggregation operation at each step in the workflow.

Workflow I.e: Cluster Data Observations. Clustering will assemble the
data observations into different groups where, ideally, the observations in a
group are close together and the groups are far apart. The main goal is to
understand the data better and, perhaps, to assemble the data into a revised
set of stationary populations. The data should be normal score transformed
before clustering. A hierarchical clustering is often applied first to look for
natural groups. A dendogram display with the data ribbon plot (the cluster
program of Ryan Barnett) provides a useful display. This is done with the
results of hierarchical clustering, then alternative clustering techniques such
as k-means and Gaussian Mixture Model (GMM) clustering is considered.

If the number of clusters is specified from prior knowledge (probably the den-
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dogram of natural clustering), then a k-means or Gaussian Mixture Models
(GMM) clustering algorithm would often create better clusters. The advan-
tage of GMMs is the use of anisotropy in the cluster space. No non-linearity
is considered. The spatial consistency of the resulting clusters must be con-
sidered. Although the spatial coordinates could easily be used in clustering,
the results are not usually meaningful. The clusters can be easily visualized.

Workflow I.f: Fit Response Surface. A response surface provides a
prediction of a dependent variable given a set of predictor or independent
variables. An assessment of the importance or sensitivity of the response
to the predictor variables is also provided. There are multiple reasons to
fit a response surface. A common application is in post processing multi-
ple realizations with the results of a transfer function (the response variable)
and posterior parameters summarizing the realizations (the predictor vari-
ables). Another application is in fitting geometallurgical response variables
from other assay measurements.

Non-informative predictor variables should be screened at the start to avoid
over-fitting. A linear or quadratic response surface is easily fit, but most
modern approaches would consider them over fit particularly with relatively
few observations and a large number of predictor variables. It is reasonable to
start with a linear and quadratic response surface fit with sabor (Zagayevskiy)
or similar program. Increasingly, non-linear fits with techniques like ACE,
random forests, gradient boosting or neural networks are becoming popular.
Gradient boosting can improve the fit in many cases. Sensitivity analysis with
tornado charts is important to show an easy-to-understand. Show prediction
on cross plot and note residual R squared (compare to ρ2).

Workflow II.a: Estimate with Unequally Sampled Data. Conven-
tional cokriging is rarely applied. One case where cokriging still proves re-
markably useful is to create estimated models in presence of multiple data
types that have not been sampled at the same locations, e.g., production
sampling and exploration data or legacy and modern data. This requires a
linear model of coregionalization between primary and secondary data. Note
that the cross covariance between the primary and secondary data is required
since a cross variogram cannot be computed directly.

Standardized ordinary cokriging or simple cokriging are applied and tra-
ditional ordinary cokriging constraints is avoided since secondary data are
forced to have no importance. Should cross validate with primary only and
with primary+secondary to show that there is no bias and to show that the
estimates are improved. Should create kriged model with primary only to
compare with cokriged model to further confirm no bias and a reduction in
smoothing with more informaiton.

Workflow II.b: Simulate with Colocated Data. A hierarchical approach
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to simulate many variables remains viable. The first primary variable is sim-
ulated with all secondary data. The second is simulated with an aggregated
variable consisting of the first and all secondary. The third considers the first
two primary and the secondary, and so on. The primary variables are ordered
in decreasing order of available data and importance. For all primary variables
in order: (1) combine all secondary data and previous primary variables, (2)
note updated correlation coefficient, and (3) apply Intrinsic Colocated Cokrig-
ing (ICCK). There are multiple realizations of the super secondary variables
when simulating the second and subsequent primary variables. The use of
ICCK in preference to conventional colocated cokriging avoids variance in-
flation and a lack of histogram reproduction. This workflow makes a strong
multivariate Gaussian assumption between all primary and secondary data,
but virtually any software can be used.

The following workflows are discussed in upcoming lectures, but a summary
is given here for completeness.

Workflow II.c: Impute Missing Data. The decorrelation workflows II.d
and II.e require full valued data sets with no missing values. Data imputation
techniques have evolved to account for multivariate relationships and spatial
correlation. Multiple imputation creates multiple datasets where each dataset
is used to create one geostatistical realization. There are parametric and non-
parametric methods. Details are described below.

Workflow II.d: Simulate with Linear Decorrelation. The only tech-
nique to decorrelate data is principal component analysis (PCA). This ven-
erable technique has been applied to decorrelate data, reduce dimensionality
and lead to a greater understanding of the truly independent factors in a sys-
tem of variables. The principal components are ordered in decreasing order
or variance. This permits some to be eliminated from geostatistical calcu-
lations; PCA is chosen if dimension reduction is important. The principal
components can be restandardized by dividing by their standard deviations.
This ”sphering” step can be followed by a rotation back to the original basis
to avoid mixing of the variables.

Any rotation could be considered once the variables are sphered. The MAF
rotation is one that aims to decorrelate at an arbitrary h vector and to order
the resultant factors according to autocorrelation (hence the name min/max
autorcorrelation factors). This is useful if there is an important lag effect and
cross correlation in the data. This MAF rotation could also be applied after
the II.e non-linear workflows.

Workflow II.e: Simulate with Nonlinear Decorrelation. Complex
non-linear relationships are not removed by the linear decorrelation work-
flows. The PPMT approach considers further transformations to correct the
multivariate distribution to a truly multivariate normal distribution. Other
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transforms are possible, but the PPMT has well established codes and has
been tested.

A MAF spatial decorrelation step could be added after the PPMT transform
if considered necessary. The resulting factors are simulated independently.
Ratios and data imputation may be required before this transformation.

Workflow II.f: Simulate with Stepwise Conditional Transform. This
workflow predates the PPMT in II.e. The transform proceeds in a stepwise
fashion from the most sampled and most important variables to the less sam-
pled/less important variables. The transform requires a fitting of the mul-
tivariate distribution using Gaussian mixture models or similar if there are
more than a few variables. PPMT is more flexible except in cases of trends
and secondary data; in these cases the stepwise transform is simpler to apply.

4.2.2 Decorrelation

PCA was introduced in the first chapter, but there are important extensions
that greatly facilitate modern multivariate modeling. The series of Lessoms
will be useful [4]. Principal Component Analysis (PCA) rotates the coordi-
nate space until all values appear uncorrelated. This helps with:

1. Understand contributions to pure components
2. Reduce dimensionality
3. Decorrelate variables for subsequent calculations

consider the correlation matrix of standardized data:

Σ : Ci,j =
1

n

n∑
α=1

yα,iyα,j

Spectral decomposition Σ = V DV T to compute PCs (P ):

P = Y V Y = PV T

Dimension reduction sphereing (standardize):

W = Y V D
−1
2

Spectral decomposition sphereing (back to original frame):

X = Y V D−
1
2V T

Minimum Maximum Autocorrelation Factors (MAF) rotate again to impart
properties for a particular lag (h). MAF is useful for decorrelating at a lag
different from 0 [58, 6].
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• Spectral decomposition: ΓX = VxDxV
T
x

• M = XVX Could also use W and ΓW

Projection Pursuit Multivariate Transformation (PPMT) considers sphered
components (MAF could apply afterwards - just like PCA or sphereing).
PPMT is covered in Lesson [5]. The process involves:

1. Search for projection vector where data are most non-Gaussian
2. Normal score transform along that vector
3. Iterate until convergence

In presence of secondary data the PPMT factors become related through the
secondary data and must be simulated in sequence considering previously
simulated. This is very counterintuitive.

Imputation has to fit somehere are the is lilely the place. Multiple Imputation
(MI) of missing data:

1. Order locations and variables in decreasing order of info.
2. Establish conditional distribution 1 based on collocated data
3. Establish conditional distribution 2 based on spatial data
4. Merge conditional distributions
5. Sample merged distribution and continue

The many implementation details of this would be found in other sources.

4.2.3 Trend Modeling and Modeling with a Trend

A continuous regionalized variable Z(u),u ∈ A is not intrinsically composed
of a deterministic trend and stochastic residual; nevertheless, there are large
scale volumes of higher and lower values within a nominally stationary do-
main. Dividing the domain into smaller domains that appear more stationary
may be an option, but the number of data reduces and artificial discontinuities
are introduced at domain boundaries. Maintaining reasonably large domains
for modeling and explicitly considering a trend has proven useful in many
case studies.

A numerical model of the deterministic trend is required. Kriging for the
trend has not been successful because kriging aims for data reproduction and
tends to the global mean at the margins of a domain. Geological variables are
rarely amenable to a simple polynomial or functional trend shape. A weighted
moving window average has proven effective. Some important implementation
details to consider: (1) a length scale for the moving window specified for
the primary direction of greatest continuity, (2) a Gaussian shape to the
weighting function, (3) anisotropy in the kernel length scale somewhat less
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Figure 4.6: Example of a constant mean and a plausible trend model.

than that of the regionalized variable - often a square root of the anisotropy
ratio to the maximum direction of continuity, (4) the weight to each data
is the kernel weight multiplied by the declustering weight, and (5) a small
background weight to all data of, say, one percent. The only free parameter
is the length scale in the primary direction. Despite some worthwhile attempts
to automate the calculation of this parameter it is set by experience and the
visual appearance of the final model. A value one third of the domain size
may be reasonable. Once the trend is modeled, we must simulate with the
trend. The blue trend m(u) on Figure 4.6 comes from a weighted moving
window average.

Modeling a trend in an optimal fashion is a worthwhile objective. The goal
is to avoid over and under fitting. The assessment of a trend model is often
based on visual criteria. Considering the correlation between the variable
Z(u) and Z(u) −m(u) can help to determine an appropriate trend model.
This correlation should be a minimum. We consider plotting this correlation
versus a smoothing parameter to determine the parameter that minimizes
this correlation. Some research (J. Qu’s PhD thesis) has indicated that the
smoothing parameter should be larger than the value that minimizes the
correlation - perhaps as much as twice.

Creating a residual as R(u) = Z(u)−m(u),u ∈ A is not good practice. Z
and m are related in complex ways causing R and m to be dependent. If
R is modeled independently then artifacts will be introduced in the R + m
back transform. A stepwise conditional transform (SCT) [42] of the original
variable conditional to the trend has proven effective. As shown in Figure 4.7,
this transform completely removes the dependence on the trend.

Independent modeling proceeds and the reverse transform introduces the de-
pendency between the original variable and the trend. The SCT considers
a fitted Gaussian Mixture Model (GMM) between the normal scores of the
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Figure 4.7: Example of how a variable is transformed conditional to a trend
to be independent of the trend.

original variable and the normal scores of the trend. These normal score
transforms are an intermediate step and are easily reversed. The workflow
of trend modeling, data transformation, simulation and back transformation
can be largely automated. There are, of course, validation steps that require
the attention of a professional.

Modeling the relationship between a trend and the variable (in Gaussian
units) with a Gaussian Mixture Model, then modeling, then back transfor-
mation seems to work very well. That is, the large and short scale structure,
the histogram and the variogram appear reasonably reproduced.

4.2.4 Exercise W4-2

The objectives of this exercise are to learn how to normal score transform
data, calculate a correlation matrix and apply principal component analysis
to determine orthogonal combinations of variables which account for a large
amount of variation. Use the skarn data with W, CaF2, Au, Cu, and Bi.

1. Normal score transform the data. Note that you do not need to use
declustering weights for this exercise, but you may optionally also com-
plete this exercise with declustering weights to see if there are any dif-
ferences in the correlations.

2. Calculate a correlation matrix for the normal score transformed data.
Also plot the normal score bivariate distributions and comment on the
results.

3. Run principal component analysis on the normal score transformed vari-
ables to construct orthogonal linear combinations of the normal score
data. Sphere the results (the standardize option). Plot the correlation
matrix and bivariate distributions. Comment on the results.
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4. See how the linear combinations are constructed and visualize the load-
ing of each variable on to the principal components to see which vari-
ables explain the greatest amount of variance in the data set.

5. Run PPMT with the original data. Plot the correlation matrix and
bivariate distributions of the PPMT factors. Comment on the results.

4.3 Categorical Variables

4.3.1 Overview of Boundaries and Surfaces

An overview of surfaces, boundaries and categories in a hierarchical modeling
framework will be presented. This is a taxonomy lecture like that at the start
of multivariate.

Surfaces should be modeled across the entire domain and unlimted with re-
spect to holes and edges.

Boundaries are 2-D and 3-D limits that intersect previously modeled region-
alized variables. Lesson on multicategory SDF is interesting [55].

The signed distance function (SDF) is the sign dependent shortest distance
to something different. SDF values could be interpolated by global inverse
distance, global kriging or radial basis functions (RBF). Then, the resulting
model is thresholded at zero. There are significant problems with boundary
and edge effects. The length of the drillholes has an influence (a parameter
than modifies the slope may be considered). A gap parameter (the c parame-
ter) could be introduced to capture uncertainty. Recent work has shown that
it is better to resort to indicators and to calibrate the thresholding of the
indicator according to a nearest neighbor model.

Multiple point statistics (MPS) are to go beyond the variogram (2 point,
but not considere multiple). The idea is to extract patterns from a training
image and to impose them on a simulated realization. The definition of the
conditional distribution is used to derive conditional probabilities. Values are
simulated from the conditional probabilities.

4.3.2 Categorical Indicators

Categorical variables are discrete lablels that have no inherent numerical
meaning. They should, of course, have a geological meaning relevant to the
modeling context. The spatial continuity of the discrete variables must be
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quite large; otherwise, the variable is really a continuous variable of the pro-
portion of the categories. The categories are also mutually exclusive, that is,
each location belongs to one category or another. The list of categories must
also be exhaustive even if one category is ”everything else”.

Although the categories do not have intrinsic numerical meaning they are of-
ten ordered. Perhaps by a degree of alteration, a concentration of an impor-
tant species or some other geological variable or position. The k = 1, . . . ,K
categories should be ordered according to their meaning if available to facili-
tate some of the modeling algorithms.

Categorical variables are based on some geological characteristic of the rock
that is large scale. We normally do not consider more than 5 to 7 at one
time - perhaps we consider categories in a hierarchical manner where there
less than 5-7 at any one scale. The continuous variables within the categories
should have different statistics (univariate or spatial). The idea is to have
reasonable consistency within each category and have the variation between
the categories. The categories must also be spatially consistent/coherent with
some degree of predictability. Finally, there must be enough data within each
category for inference of the required statistical parameters.

Anything we know should not be left to chance. The referred order of tech-
niques starts with deterministic mapping (digitized surfaces or solid models)
where our geological understanding is explicitly reproduced in the model.
Given uncertainty and the demands of explicit digitization, it is common to
consider volume or distance functions for boundaries.

Process based models mimicking geological processes are rarely applied in
mining, but have a place in sedimentary settings with wide data spacing.
Object based models simulating geological features are also rarely applied
in mining, but have a place when the geological units form clearly defined
shapes. Cell based geostatistical models such as indicator simulation, trun-
cated Gaussian or multiple point statistics are often used when the scale of
the geological features is smaller than the data spacing.

Indicators were made for categories - lending them numerical meaning. In
the context of k = 1, . . . ,K categories the indicator transform is defined as:

i(uα; k) =

{
1, if z(uα) = k
0, otherwise

, k = 1, . . . ,K

Indicators have a numerical meaning and we can calculate statistics. The
expected value is the mean or proportion:

E{I(u; k)} = proportionofcategoryk = pk

We would use declustering for to calculate the proportions in practice. The
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variance of an indicator is a simple function of the proportion.

E{[I(u; k)− pk]
2} = pk − p2k = pk(1− pk)

The variance of an indicator is useful, but entropy is a natural measure of
uncertainty. The entropy is a maximum when pk = 1/K:

H = −
K∑
k=1

pk lnpk Hmax = −ln(pk) = ln(K)

Each indicator variable could be considered in variography. The variogram
of each indicator provides a measure of continuity for that category. The
definition of indicator variograms:

2γ(h) = E{[I(u; k)− I(u + h; k)]
2} k = 1, . . . ,K

Indicator variograms are related and cannot be modeled independently. Conider
two categories - the indicator variograms must be the same!

Another feature of indicator variogams is that they must increase linearly.
The number of transitions for the second lag is double the number for the
first - provided the intervals are more than two units thick, which should be
the case.

Indicator kriging [36] could be considered at an unsampled location. Often,
ordinary kriging is considered with a reasonably large search - to provide
stable estimates.

i∗(u�; k)− pk(u�; k) =

n∑
α=1

[i(uα; k)− pk(uα; k)] k = 1, . . . ,K

Cokriging does not work well because fitting an LMC is impossible. A locally
varying mean or trend model is useful. A large and consistent search is a
good idea. There is no smoothing in the estimation of an indicator; the
probabilities capture the uncertainty.

The indicator kriging estimates may not satisy order relations, that is, they
may be less than zero and above one (due to negative kriging weights) snd
they may not sum to one due to different variograms. Standard practice
is to reset negative estimates to zero, estimates above one to one and to
restandarize the resultant probabilities. This works and no alternative has
proved better.

We should resist the idea of taking the most probable category since that
would lead to the majority category getting even more. A deterministic model
could start by populating the highest probability of the smallest proportion
category first (until the correct proportion), then proceed to the majority
category. Better to use simulation.
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Indicator kriging can be embedded in a sequential simulation framework lead-
ing to sequential indicator simulation (Alabert and [16] (SIS). SIS has been
extensively used for categorical variables. The following lecture on HTPG
will supercede SIS in many cases, but the historical and practical importance
is significant.

The results of SIS tend to be noisy with short scale variability that is unreal-
istic. Image cleaning is often applied (Schnetzler and [17]). The maximum a
posterior selection (MAPS) algorithm visits each grid node and replaces the
current assignment with (perhaps) an improved one based on the surrounding
values.

4.3.3 Hierarchical Truncated PluriGaussian

Categorical variables are usually modeled first and utilized to define sta-
tionary domains for the modeling of the continuous variables. Truncated
pluri-Gaussian simulation (TPGS) is flexible. The utilization of underlying
Gaussian latent variables for the simulation of categories allows for the use
of the well established Gaussian simulation techniques. The truncation rules
utilized to map the continuous variables to the categorical variable allow the
introduction of geological constraints. The practical application of TPGS is
often limited to the utilization of no more than three Gaussian latent vari-
ables. This is mostly attributed to the current practice on the definition of
truncation rules using truncation masks. This limitation is addressed by the
hierarchical truncated pluri-Gaussian (HTPG) technique. HTPG utilizes a
tree structure for the truncation of the Gaussian latent variables facilitating
its definition based on geological expertise. The developed methodology al-
lows for an arbitrary number of latent variables to model an arbitrary number
of categories. As a result, the developed method better explores the potential
of the truncated Gaussian method.

Details of HTPG are best understood by reviewing CCG Guidebook 23 that
accompanies the lecture notes for the class. This 100 page Guidebook reviews
the background, steps through the theory and provides a full worked example.
A high level overview is presented here.

There are five essential steps for the application of truncated Gaussian meth-
ods: (1) definition of a truncation rule; (2) mapping of spatial continuity from
categorical to continuous space; (3) imputation of continuous data subject to
categorical observations; (4) simulation of the continuous variables at model-
ing nodes; and (5) truncation of the simulated models to generate categorical
realizations. The first step is perhaps the most important.

Figure 4.8 illustrates the key concept behind HTPG. A hierarchical truncation
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Figure 4.8: A schematic cross section showing seven categories and a corre-
sponding HTPG truncation tree for categorical variable simulation.

tree is setup to reflect the deemed relevant geological relationships. This may
be done by consideration of the geological setting. Considering transition
probabilities, multidimensional scaling and other statistical tools could help.
If there are no compelling geological evidence, then a tree could be setup
where one category is separated from all others - one at a time. A total of
K − 1 Gaussian variables would be required. In practice, without detailed
geology, small proportion and unusual categories are placed at the top of the
tree.

Another consideration with all categorical variable modeling techniques is the
use of a trend model in the proportions. Some details of trend modeling were
discussed yesterday in Section 4.2.3. The trend model for the proportion of
each category should be constructed in a consistent manner.

Variograms of the latent Gaussian variables are required for HTPG. These are
inferred given the truncation rule, trend model and the variograms of the in-
dicator residuals (residuals from the trend model). This is an inverse problem
solved by Monte Carlo Simulation (see the Guidebook). The variograms of
the latent Gaussian variables almost always appear more spatially correlated
than the indicator variograms; recall that indicator variograms must increase
linearly whereas the variograms of the Gaussian variables do not have this
constraint.

Simulation of the latent Gaussian variables required conditioning data values.
We have the result of the truncation process - the categories, but we do not
have the underlying latent Gaussian variables. This is a missing data problem
solved by data imputation. The missing Gaussian deviates are imputed to
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reproduce the categorical data, the histograms and the variograms. This is
a tricky problem solved by an iterative Gibbs Sampler. See the explanation
and software covered in the Guidebook.

The remaining practical steps of HTPG are quite straightforward. The sim-
ulation of the latent variables is accomplished with SGS or with an uncondi-
tional algorithm followed by conditioning. The simulated Gaussian values are
truncated and categorical variable realizations are constructed. They must
be checked and validated to the greatest extent possible. A k-fold valida-
tion scheme should be implemented and the accuracy and precision of the
predictions should be checked.

4.3.4 Exercise W4-3

This exercise will introduce some categorical variable modeling techniques
using a large indicator data set. Indicator kriging and sequential indicator
simulation will be used. Consider the indicator variable in sic.dat.

1. Plot a location map of the data and run cell declustering with a reason-
able cell size: 15000 m is likely reasonable. What are the declustered
proportions? What is the declustered variance?

2. Calculate and model directional indicator variograms. As there are only
2 categories (0 and 1), the variograms for each category will be identical.
Pick a reasonable azimuth for the major direction based on the location
map.

3. Use indicator kriging with the declustered proportions and modeled
variograms to estimate proportions over the domain and plot the results.
Do they match the data?

4. Create 100 realizations of the domain using sequential indicator simu-
lation. Post-process the realizations to calculate the e-type mean and
entropy. Plot the first 2 realizations, the e-type mean and entropy.
Comment on your results and compare the e-type mean with the indi-
cator kriging maps.

4.4 Setup and Post Processing

4.4.1 Indicator Kriging and Uniform Conditioning

Multiple indicator kriging (MIK) has the promise of estimating local condi-
tional distributions of uncertainty without a strong dependence on the mul-
tivariate Gaussian distribution [36]. The Lesson on MIK is a nice summary
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[8].

1. Choosing thresholds is the first step of MIK. The number of thresholds
is normally chosen between 7 to 15; considering too many may induce
more order relation problems and too few thresholds would result in
low resolution of the predicted distributions. Some criteria for choosing
the thresholds include: (1) commonly start with nine thresholds defining
deciles of the global distribution, (2) Move the thresholds to correspond
to interesting inflection points on the cumulative distribution function,
(3) Remove some low thresholds depending on the cutoff grade and add
some high thresholds to define approximately equal quantity of metal in
the upper classes, (4) Move the thresholds so one matches the specified
cutoff grade, and (5) Intervals should have enough data for a robust
estimation; perhaps a minimum of 5% of the data.

2. Indicator variograms are required for every threshold. These variograms
are often well behaved as the data are only 0s and 1s. Nevertheless,
carefully choosing orientations and variogram parameters is still nec-
essary to acquire stable variograms. The indicator variograms should
be standardized to make it easier to analyze, compare and model the
indicator variograms. Any licit variogram structure that rises linearly
at the origin such as exponential and spherical can be used for modeling
the variograms. It is convenient to use the same type for all indicator
variograms to ensure consistent changes. The indicator variograms, af-
ter all, relate to the same underlying continuous variable. Transitions
between the indicator variograms are expected to be smooth in terms
of variance, anisotropy, and ranges. To check these transitions from
one indicator to the next, the ranges, nugget effects and anisotropy can
be plotted versus the threshold number. There should be no abrupt
discontinuity between variograms of consecutive thresholds.

3. Indicator kriging (perhaps Markov-Bayes), order relations correction
4. Post processing

Uniform conditioning is another technique to predict the uncertainty in SMU
grades given local panel estimate conditions.

1. Consider four scales (see Figure 4.9)
2. Basic data scale statistics
3. Ordinary kriging at the panel scale
4. Calculate the distribution of SMU grades within each panel

Localization will be mentioned here.

1. Distribution of SMU grades within each panel - could come from UC,
MIK, MG or simulation

2. Choose SMU grades - as many as there are SMUs within the panel
3. Assign values based on a localizing variable
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Figure 4.9: Illustration of the four scales involved in uniform conditioning:
the data, the SMU, panel and domain.

The advantage of localization is a unique single model that respects the SMU
scale distribution. Local accuracy is compromised, but is reasonable at the
larger panel scale.

4.4.2 Post Processing

Setup of model - parameter uncertainty, data uncertainty, simulate realiza-
tions, process through a transfer function, report uncertainty and sensitivity.

Local uncertainty, block averaging (upscaling), data spacing (Lesson [50]) and
localization

Take expected value as late as possible. Calculate on all realizations, then
take the average as late as possible.

Grade control - calculate profit for all possibilities and all realizations, then
take the decision that maximizes the expected profit. The resolution of the
prediction should be at a resolution of one quarter of the data spacing to
provide the best possible boundary.

4.4.3 Model Setup

Post processing is straightforward with estimation or deterministic models.
Categories representing the geology is modeled first, then the grades are mod-
eled within categories. The estimates are clipped by maximum drill hole spac-
ing and the results are validated and checked to the greatest extent possible.
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Post processing simulated realizations is more challenging given the multiple
models.

A high resolution data spacing model is important to clip estimates/simulated
values and to understand how uncertainty depends on data spacing. In 2-D
a constant n approach is used - the area within:

dhs =

√
πr2

n

where r is the radius half way between the distance that includes n and n+1.
Often, a value of n between 10 to 20 is considered. In cases of irregular 3-
D spacing of data, a constant volume approach is often considered. A large
volume oriented with the overall anisotropy is considered, the number of data
within that volume are counted, the equivalent square spacing relative to the
plane of continuity is computed by calibration.

Simulated realizations are often scaled up to nominal production volumes
of months, quarters or years. Then, the uncertainty is calibrated to the
drill hole spacing. Uncertainty is often summarized as the probability to be
within 15% of predicted (P ∈ ±15). Uncertainty is not simply related to the
data spacing. Other modifying factors include (1) the geological complexity -
perhaps summarized by H, (2) the proportional effect, (3) the distance to the
closest drill hole, and other factors. A response surface model (RSM) could
be built to quantify how each factor is contributing.

Uncertainty of large volumes can be artificially small if parameter uncertainty
is not considered. Stochastic variations between high and low values average
out and large scale values converge to a similar value. Parameter uncertainty
with the multivariate spatial bootstrap [61] is essential to accurately reflect
large scale uncertainty. Each realization being simulated considers different
input distributions.

The drill hole spacing and uncertainty response curve is considered carefully
to understand when there is little response and when uncertainty is respond-
ing quickly to more data. Figure 4.10 shows the learning curve concept of
how uncertainty responds to more data.

Classification decisions must always depend on the qualified or competent
person. Uncertainty such a ”quarterly production volumes must be within
15% of predicted 90% of the time or more.” Sometimes drill holes have to be
removed to understand uncertainty at a larger spacing. Sometimes we must
drill a simulated realization to understand how uncertainty responds to drill
hole spacings that have not been seen.
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Figure 4.10: Illustration of how uncertainty often responds to more data.
Consider moving from large data spacing to close data spacing (right to left
in the figure above) - the uncertainty responds slowly, then more quickly
as spatial features are resolved, then more slowly again as higher resolution
details are slowly learned.

4.4.4 Exercise W4-4

The objectives of this exercise are to learn how to post process a set of multiple
realizations. Data spacing, localization and other topics will be summarized.

1. Consider the multiple realizations of Au for the Misima data (earlier
exercise). Block average to a 20x20x10m scale. Visualize the results
and calculate the expected grade tonnage curve.

2. Calculate the local variance and local coefficient of variation. Visualize
and compare to the local data spacing.

3. Consider the multiple realizations of Au for the Misima data (earlier
exercise). Block average to a 40x40x10m scale. Visualize the results
and calculate the expected grade tonnage curve. Compare the results
to Question 1.

4. Localize the block averaged results to a 20x20x10m scale with a panel
scale of 100x100x20m scale. Show the results and comment.
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Additional Information

Software Setup

Any software could be used. There are commercial software that performs
the requested calculations. The GSLIB software, updated versions and addi-
tional software from the Centre for Computational Geostatistics (CCG) are
provided for all participants in the Citation program. The preferred approach
to run all computer exercises (all but three) is to run the entire exercise in a
Jupyter notebook, then export the notebook as an html file and submit that
as the solution. There are many online resources for this and the wealth of
information online cannot be repeated here. Some tips are provided.

The first step to getting setup for running the Citation exercises is to en-
sure that you have a clean installation of Anaconda. Depending on your
comfort with this platform, you may have to remove old versions or setup
a new environment. You will also have to have a version of GIT installed
on your computer (https://git-scm.com/) since this is used by pygeostat
to access the executables. If necessary, you could copy the executables to
the correct location and avoid the use of git. You should bookmark (http:
//www.ccgalberta.com/pygeostat/welcome.html) which is the pygeostat doc-
umentation since this will be referred to extensively.

Many notebooks that illustrate different calculations are provided with the
course material. These should be reviewed. There are many ways to launch
a notebook. The simplest way is to open the Anaconda Prompt and install
pygeostat: pip install pygeostat. The small batch file CitNotebook.bat could
be copied to your installation directory (C:/Users/Clayton/anaconda3 on my
computer) and edit appropriately. This is to open a jupyter notebook in the
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right place.

An important step in the Citation is to review the introduction and learning
notebooks that have been provided: Py1Basics.ipynb, Py2GSLIB.ipynb and
Py3Pygeostat.ipynb. For those that still use legacy GSLIB code for certain
plotting functions - review the notebook and example in the Postscript

directory.

Support

There is none. Questions can be sent to the instructor of the class and
any designated teaching assistants; however, everyone will have to struggle
through learning how to bend the computer to your will.

Plots and Colors

The color scales and choices available at (https://colorbrewer2.org) should be
considered. Colors should also be standardized across a project and, perhaps,
an entire organization looking the same commodity.

https://colorbrewer2.org
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